Previous |  Up |  Next

Article

Title: Module $(\varphi,\psi)$-amenability of Banach algebras (English)
Author: Bodaghi, Abasalt
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 46
Issue: 4
Year: 2010
Pages: 227-235
Summary lang: English
.
Category: math
.
Summary: Let $S$ be an inverse semigroup with the set of idempotents $E$ and $S/\approx$ be an appropriate group homomorphic image of $S$. In this paper we find a one-to-one correspondence between two cohomology groups of the group algebra $\ell ^1(S)$ and the semigroup algebra $ {\ell ^{1}}(S/\approx )$ with coefficients in the same space. As a consequence, we prove that $S$ is amenable if and only if $S/\approx $ is amenable. This could be considered as the same result of Duncan and Namioka [5] with another method which asserts that the inverse semigroup $S$ is amenable if and only if the group homomorphic image $S/\sim $ is amenable, where $\sim $ is a congruence relation on $S$. (English)
Keyword: Banach modules
Keyword: module derivation
Keyword: module amenability
Keyword: inverse semigroup
MSC: 43A07
MSC: 46H25
idZBL: Zbl 1240.43001
idMR: MR2754062
.
Date available: 2010-12-14T14:54:14Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/141377
.
Reference: [1] Amini, M.: Module amenability for semigroup algebras.Semigroup Forum 69 (2004), 243–254. Zbl 1059.43001, MR 2081295, 10.1007/s00233-004-0107-3
Reference: [2] Amini, M., Bodaghi, A., Bagha, D. Ebrahimi: Module amenability of the second dual and module topological center of semigroup algebras.Semigroup Forum 80 (2010), 302–312. MR 2601766, 10.1007/s00233-010-9211-8
Reference: [3] Amioni, M.: Corrigendum, Module amenability for semigroup algebras.Semigroup Forum 72 (2006), 493. MR 2228544
Reference: [4] Dale, H. G.: Banach Algebra and Automatic Continuity.Oxford university Press, 2000.
Reference: [5] Duncan, J., Namioka, I.: Amenability of inverse semigroups and their semigroup algebra.Proc. Roy. Soc. Edinburgh Sect. A 80 (3–4) (1978), 309–321. MR 0516230
Reference: [6] Howie, J. M.: An Introduction to Semigroup Theory.London Academic Press, 1976. Zbl 0355.20056, MR 0466355
Reference: [7] Johnson, B. E.: Cohomology in Banach algebras.Mem. Amer. Math. Soc. 127 (1972), iii+96 pp. Zbl 0256.18014, MR 0374934
Reference: [8] Moslehian, M. S., Motlagh, A. N.: Some notes on $(\sigma ,\tau )$-amenability of Banach algebras.Stud. Univ. Babeş-Bolyai Math. 53 (3) (2008), 57–68. Zbl 1199.46111, MR 2487108
Reference: [9] Munn, W. D.: A class of irreducible matrix representations of an arbitrary inverse semigroup.Proc. Glasgow Math. Assoc. 5 (1961), 41–48. Zbl 0113.02403, MR 0153762
Reference: [10] Paterson, A. L. T.: Groupoids, Inverse Semigroups, and Their Operator Algebras.Birkhäuser, Boston, 1999. Zbl 0913.22001, MR 1724106
Reference: [11] Rezavand, R., Amini, M., Sattari, M. H., Bagh, D. Ebrahimi: Module Arens regularity for semigroup algebras.Semigroup Forum 77 (2008), 300–305. MR 2443440, 10.1007/s00233-008-9075-3
Reference: [12] Wilde, C., Argabright, L.: Invariant means and factor semigroup.Proc. Amer. Math. Soc. 18 (1967), 226–228. MR 0215064, 10.1090/S0002-9939-1967-0215064-9
.

Files

Files Size Format View
ArchMathRetro_046-2010-4_1.pdf 480.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo