Previous |  Up |  Next

Article

Title: Zero-divisors of content algebras (English)
Author: Nasehpour, Peyman
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 46
Issue: 4
Year: 2010
Pages: 237-249
Summary lang: English
.
Category: math
.
Summary: In this article, we prove that in content extentions minimal primes extend to minimal primes and discuss zero-divisors of a content algebra over a ring who has Property (A) or whose set of zero-divisors is a finite union of prime ideals. We also examine the preservation of diameter of zero-divisor graph under content extensions. (English)
Keyword: content algebra
Keyword: few zero-divisors
Keyword: McCoy’s property
Keyword: minimal prime
Keyword: property (A)
Keyword: primal ring
Keyword: zero-divisor graph
MSC: 05C25
MSC: 05C99
MSC: 13A15
MSC: 13A99
MSC: 13B25
idZBL: Zbl 1240.13002
idMR: MR2754063
.
Date available: 2010-12-14T14:55:46Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/141379
.
Reference: [1] Anderson, D. D., Kan, B. G.: Content formulas for polynomials and power series and complete integral closure.J. Algebra 181 (1996), 82–94. MR 1382027, 10.1006/jabr.1996.0110
Reference: [2] Anderson, D. F., Livingston, P. S.: The zero-divisor graph of a commutative ring.J. Algebra 217 (1999), 434–447. Zbl 0941.05062, MR 1700509, 10.1006/jabr.1998.7840
Reference: [3] Arnold, J. T., Gilmer, R.: On the content of polynomials.Proc. Amer. Math. Soc. 40 (1970), 556–562. MR 0252360, 10.1090/S0002-9939-1970-0252360-3
Reference: [4] Axtell, M., Coykendall, J., Stickles, J.: Zero-divisor graphs of polynomials and power series over commutative rings.Comm. Algebra 6 (2005), 2043–2050. Zbl 1088.13006, MR 2150859, 10.1081/AGB-200063357
Reference: [5] Bruns, W., Guerrieri, A.: The Dedekind-Mertens formula and determinantal rings.Proc. Amer. Math. Soc. 127 (3) (1999), 657–663. Zbl 0915.13008, MR 1468185, 10.1090/S0002-9939-99-04535-9
Reference: [6] Dauns, J.: Primal modules.Comm. Algebra 25 (8) (1997), 2409–2435. Zbl 0882.16001, MR 1459569, 10.1080/00927879708825998
Reference: [7] Davis, E.: Overrings of commutative rings II. Integrally closed overrings.Trans. Amer. Math. Soc. 110 (1964), 196–212. Zbl 0128.26005, MR 0156868, 10.1090/S0002-9947-1964-0156868-2
Reference: [8] Eakin, P., Silver, J.: Rings which are almost polynomial rings.Trans. Amer. Math. Soc. 174 (1974), 425–449. MR 0309924, 10.1090/S0002-9947-1972-0309924-4
Reference: [9] Gilmer, R.: Multiplicative Ideal Theory.Marcel Dekker, New York, 1972. Zbl 0248.13001, MR 0427289
Reference: [10] Gilmer, R.: Commutative Semigroup Rings.The University of Chicago Press, 1984. Zbl 0566.20050, MR 0741678
Reference: [11] Heinzer, W., Huneke, C.: The Dedekind-Mertens Lemma and the content of polynomials.Proc. Amer. Math. Soc. 126 (1998), 1305–1309. MR 1425124, 10.1090/S0002-9939-98-04165-3
Reference: [12] Huckaba, J. A.: Commutative Rings with Zero Divisors.Marcel Dekker, 1988. Zbl 0637.13001, MR 0938741
Reference: [13] Huckaba, J. A., Keller, J. M.: Annihilation of ideals in commutative rings.Pacific J. Math. 83 (1979), 375–379. Zbl 0388.13001, MR 0557938, 10.2140/pjm.1979.83.375
Reference: [14] Kaplansky, I.: Commutative Rings.Allyn and Bacon, Boston, 1970. Zbl 0203.34601, MR 0254021
Reference: [15] Loper, K. A., Roitman, M.: The content of a Gaussian polynomial is invertible.Proc. Amer. Math. Soc. 133 (2005), 1267–1271. Zbl 1137.13301, MR 2111931, 10.1090/S0002-9939-04-07826-8
Reference: [16] Lucas, T. G.: The diameter of a zero divisor graph.J. Algebra 301 (2006), 174–193. Zbl 1109.13006, MR 2230326, 10.1016/j.jalgebra.2006.01.019
Reference: [17] McCoy, N. H.: Remarks on divisors of zero.Amer. Math. Monthly 49 (1942), 286–29. Zbl 0060.07703, MR 0006150, 10.2307/2303094
Reference: [18] Northcott, D. G.: A generalization of a theorem on the content of polynomials.Proc. Camb. Philos. Soc. 55 (1959), 282–288. Zbl 0103.27102, MR 0110732, 10.1017/S030500410003406X
Reference: [19] Ohm, J., Rush, D. E.: Content modules and algebras.Math. Scand. 31 (1972), 49–68. Zbl 0248.13013, MR 0344289
Reference: [20] Rush, D. E.: Content algebras.Canad. Math. Bull. 21 (3) (1978), 329–334. Zbl 0441.13005, MR 0511581, 10.4153/CMB-1978-057-8
Reference: [21] Tsang, H.: Gauss’ Lemma.University of Chicago, Chicago, 1965, dissertation. MR 2611536
Reference: [22] Zariski, O., Samuel, P.: Commutative Algebra.Van Nostrand, New York, 1958. Zbl 0081.26501, MR 0090581
.

Files

Files Size Format View
ArchMathRetro_046-2010-4_2.pdf 469.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo