Title:
|
On $a$-Kasch spaces (English) |
Author:
|
Estaji, Ali Akbar |
Author:
|
Henriksen, Melvin |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
46 |
Issue:
|
4 |
Year:
|
2010 |
Pages:
|
251-262 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
If $X$ is a Tychonoff space, $C(X)$ its ring of real-valued continuous functions. In this paper, we study non-essential ideals in $C(X)$. Let $a$ be a infinite cardinal, then $X$ is called $a$-Kasch (resp. $\bar{a}$-Kasch) space if given any ideal (resp. $z$-ideal) $I$ with $\operatorname{gen}\,(I)<a$ then $I$ is a non-essential ideal. We show that $X$ is an $\aleph _0$-Kasch space if and only if $X$ is an almost $P$-space and $X$ is an $\aleph _1$-Kasch space if and only if $X$ is a pseudocompact and almost $P$-space. Let $C_F(X)$ denote the socle of $C(X)$. For a topological space $X$ with only a finite number of isolated points, we show that $X$ is an $a$-Kasch space if and only if $\frac{C(X)}{C_F(X)}$ is an $a$-Kasch ring. (English) |
Keyword:
|
$a$-Kasch space |
Keyword:
|
almost $P$-space |
Keyword:
|
basically disconnected |
Keyword:
|
$C$-embedded |
Keyword:
|
essential ideal |
Keyword:
|
extremally disconnected |
Keyword:
|
fixed ideal |
Keyword:
|
free ideal |
Keyword:
|
Kasch ring |
Keyword:
|
$P$-space |
Keyword:
|
pseudocompact space |
Keyword:
|
Stone-Čech compactification |
Keyword:
|
socle |
Keyword:
|
realcompactification |
MSC:
|
13A30 |
MSC:
|
16S60 |
MSC:
|
46J10 |
MSC:
|
54C40 |
idZBL:
|
Zbl 1240.54064 |
idMR:
|
MR2754064 |
. |
Date available:
|
2010-12-14T14:56:55Z |
Last updated:
|
2013-09-19 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/141380 |
. |
Reference:
|
[1] Azarpanah, F.: Essential ideals in $C(X)$.Period. Math. Hungar. 3 (12) (1995), 105–112. Zbl 0869.54021, MR 1609417, 10.1007/BF01876485 |
Reference:
|
[2] Azarpanah, F.: Intersection of essential ideals in $C(X)$.Proc. Amer. Math. Soc. 125 (1997), 2149–2154. Zbl 0867.54023, MR 1422843, 10.1090/S0002-9939-97-04086-0 |
Reference:
|
[3] Azarpanah, F.: On almost $P$-space.Far East J. Math. Sci. Special volume (2000), 121–132. MR 1761076 |
Reference:
|
[4] Azarpanah, F., Karamzadeh, O. A. S., Aliabad, A. R.: On $z^{\circ }$-ideals in $C(X)$.Fund. Math. 160 (1999), 15–25. Zbl 0991.54014, MR 1694400 |
Reference:
|
[5] Dietrich, W. E., Jr., : On the ideal structure of $C(X)$.Trans. Amer. Math. Soc. 152 (1970), 61–77. Zbl 0205.42402, MR 0265941 |
Reference:
|
[6] Donne, A. Le: On a question concerning countably generated $z$-ideal of $C(X)$.Proc. Amer. Math. Soc. 80 (1980), 505–510. MR 0581015 |
Reference:
|
[7] Engelking, R.: General topology.mathematical monographs, vol. 60 ed., PWN Polish Scientific publishers, 1977. Zbl 0373.54002, MR 0500780 |
Reference:
|
[8] Gillman, L., Jerison, M.: Rings of continuous functions.Springer-Verlag, 1979. MR 0407579 |
Reference:
|
[9] Goodearl, K. R.: Von Neumann regular rings.Pitman, San Francisco, 1979. Zbl 0411.16007, MR 0533669 |
Reference:
|
[10] Karamzadeh, O. A. S., Rostami, M.: On the intrinsic topology and some related ideals of $C(X)$.Proc. Amer. Math. Soc. 93 (1985), 179–184. Zbl 0524.54013, MR 0766552 |
Reference:
|
[11] Lam, Tsit-Yuen: Lectures on Modules and Rings.Springer, 1999. |
Reference:
|
[12] Levy, R.: Almost $P$-spaces.Can. J. Math. 29 (1977), 284–288. Zbl 0342.54032, MR 0464203 |
Reference:
|
[13] Marco, G. De: On the countably generated $z$-ideal of $C(X)$.Proc. Amer. Math. Soc. 31 (1972), 574–576. MR 0288563 |
Reference:
|
[14] Nunzetta, P., Plank, D.: Closed ideal in $C(X)$.Proc. Amer. Math. Soc. 35 (2) (1972), 601–606. MR 0303496 |
. |