Previous |  Up |  Next

Article

Title: Positive solution to a singular $(k,n-k)$ conjugate boundary value problem (English)
Author: Yao, Qingliu
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 136
Issue: 1
Year: 2011
Pages: 69-79
Summary lang: English
.
Category: math
.
Keyword: singular ordinary differential equation
Keyword: higher order boundary value problem
Keyword: positive solution
Keyword: existence theorem
MSC: 34B15
MSC: 34B16
MSC: 34B18
MSC: 47N20
idZBL: Zbl 1224.34085
idMR: MR2807710
DOI: 10.21136/MB.2011.141451
.
Date available: 2011-03-31T11:28:06Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/141451
.
Reference: [1] Agarwal, R. P.: Boundary Value Problems for Higher Order Differential Equations.World Scientific Singapore (1986). Zbl 0619.34019, MR 1021979
Reference: [2] O'Regan, D.: Existence Theory for Nonlinear Ordinary Differential Equations.Kluwer Academic Dordrecht (1997). Zbl 1077.34505, MR 1449397
Reference: [3] Eloe, P. W., Henderson, J.: Singular nonlinear $(k,n-k)$ conjugate boundary value problems.J. Differ. Equations 133 (1997), 136-151. Zbl 0870.34031, MR 1426760, 10.1006/jdeq.1996.3207
Reference: [4] Agarwal, R. P., O'Regan, D.: Positive solutions for $(p,n-p)$ conjugate boundary value problems.J. Differ. Equations 150 (1998), 462-473. Zbl 0920.34027, MR 1658664, 10.1006/jdeq.1998.3501
Reference: [5] Ma, R.: Positive solutions for semipositone $(k,n-k)$ conjugate boundary value problems.J. Math. Anal. Appl. 252 (2000), 220-229. Zbl 0979.34012, MR 1797853, 10.1006/jmaa.2000.6987
Reference: [6] Jiang, D.: Multiple positive solutions to singular boundary value problems for superlinear higher-order ODEs.Comput. Math. Appl. 40 (2000), 249-259. Zbl 0976.34019, MR 1763623, 10.1016/S0898-1221(00)00158-9
Reference: [7] Yang, X.: Green's function and positive solutions for higher-order ODE.Appl. Math. Comput. 136 (2003), 379-393. Zbl 1048.34060, MR 1937939, 10.1016/S0096-3003(02)00056-5
Reference: [8] Lan, K. Q.: Multiple positive solutions of conjugate boundary value problems with singularities.Appl. Math. Comput. 147 (2004), 461-474. Zbl 1054.34032, MR 2012586, 10.1016/S0096-3003(02)00739-7
Reference: [9] Wong, P. J. Y.: A system of $(n_{i},p_{i})$ boundary value problems with positive/nonpositive nonlinearities.J. Math. Anal. Appl. 243 (2000), 293-312. Zbl 0953.34013, MR 1741525, 10.1006/jmaa.1999.6671
Reference: [10] Wong, P. J. Y., Agarwal, R. P.: Multiple solutions for a system of $(n_{i},p_{i})$ boundary value problems.J. Anal. Appl. 19 (2000), 511-528. Zbl 1160.34313, MR 1769006
Reference: [11] Anderson, D. R., Davis, J. M.: Multiple solutions and eigenvalues for third-order right focal boundary value problems.J. Math. Anal. Appl. 267 (2002), 135-157. Zbl 1003.34021, MR 1886821, 10.1006/jmaa.2001.7756
Reference: [12] Yao, Q.: The existence and multiplicity of positive solutions for a third-order three-point boundary value problem.Acta Math. Appl. Sin., English Ser. 19 (2003), 117-122. Zbl 1048.34031, MR 2053778, 10.1007/s10255-003-0087-1
Reference: [13] Yao, Q.: Existence of $n$ solutions and/or positive solutions to a semipositone elastic beam equation.Nonlinear Anal. TMA 66 (2007), 138-150. Zbl 1113.34013, MR 2271642
Reference: [14] Yao, Q.: Positive solutions of singular third-order three-point boundary value problems.J. Math. Anal. Appl. 354 (2009), 207-212. Zbl 1169.34314, MR 2510431, 10.1016/j.jmaa.2008.12.057
Reference: [15] Hewit, E., Stromberg, K.: Real and Abstract Analysis.Springer Berlin (1978).
.

Files

Files Size Format View
MathBohem_136-2011-1_8.pdf 248.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo