Previous |  Up |  Next

Article

Title: Locally spectrally bounded linear maps (English)
Author: Bendaoud, M.
Author: Sarih, M.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 136
Issue: 1
Year: 2011
Pages: 81-89
Summary lang: English
.
Category: math
.
Summary: Let ${\mathcal L}({\mathcal H})$ be the algebra of all bounded linear operators on a complex Hilbert space ${\mathcal H}$. We characterize locally spectrally bounded linear maps from ${\mathcal L}({\mathcal H})$ onto itself. As a consequence, we describe linear maps from ${\mathcal L}({\mathcal H})$ onto itself that compress the local spectrum. (English)
Keyword: local spectrum
Keyword: local spectral radius
Keyword: linear preservers
MSC: 47A10
MSC: 47A53
MSC: 47B49
idZBL: Zbl 1216.47066
idMR: MR2807711
DOI: 10.21136/MB.2011.141452
.
Date available: 2011-03-31T11:29:09Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/141452
.
Reference: [1] Aiena, P.: Fredholm and Local Spectral Theory, with Applications to Multipliers.Kluwer Academic Publishers (2004). Zbl 1077.47001, MR 2070395
Reference: [2] Akbari, S., Aryapoor, M.: On linear transformations preserving at least one eigenvalue.Proc. Amer. Math. Soc. 132 (2004), 1621-1625. Zbl 1041.15001, MR 2051122, 10.1090/S0002-9939-03-07262-9
Reference: [3] Bendaoud, M., Bourhim, A.: Essentially spectrally bounded linear maps.Proc. Amer. Math. Soc. 92 (2009), 257-265. Zbl 1177.47048, MR 2496677
Reference: [4] Bendaoud, M., Sarih, M.: Linear maps preserving the local spectral radius, preprint..
Reference: [5] Torgašev, A.: On operators with the same local spectra.Czech. Math. J. 48 (1998), 77-83. MR 1614080, 10.1023/A:1022467611697
Reference: [6] Bourhim, A., Miller, V. G.: Linear maps on $M_n(\mathbb{C})$ preserving the local spectral radius.Studia Math. 188 (2008), 67-75. MR 2430550, 10.4064/sm188-1-4
Reference: [7] Bračič, J., Müller, V.: Local spectrum and local spectral radius at a fixed vector.Studia Math. 194 (2009), 155-162. MR 2534182
Reference: [8] Chernoff, P. R.: Representations, automorphisms, and derivations of some operator algebras.J. Funct. Anal. 12 (1973), 257-289. Zbl 0252.46086, MR 0350442, 10.1016/0022-1236(73)90080-3
Reference: [9] González, M., Mbekhta, M.: Linear maps on $M_{n}(\mathbb C)$ preserving the local spectrum.Linear Algebra Appl. 427 (2007), 176-182. Zbl 1127.15005, MR 2351350
Reference: [10] Herstein, I. N.: Jordan homomorphisms.Trans. Amer. Math. Soc. 81 (1956), 331-341. Zbl 0073.02202, MR 0076751, 10.1090/S0002-9947-1956-0076751-6
Reference: [11] Laursen, K. B., Neumann, M. M.: An Introduction to Local Spectral Theory.Oxford University Press, New York (2000). Zbl 0957.47004, MR 1747914
Reference: [12] Richart, C. E.: General Theory of Banach Algebras.Van Nostrand, Princeton (1960). MR 0115101
Reference: [13] Šemrl, P.: Spectrally bounded linear maps on $B(H)$.Quart. J. Math. Oxford 49 (1998), 87-92. MR 1617339, 10.1093/qmathj/49.1.87
.

Files

Files Size Format View
MathBohem_136-2011-1_9.pdf 245.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo