Title:
|
Locally spectrally bounded linear maps (English) |
Author:
|
Bendaoud, M. |
Author:
|
Sarih, M. |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
136 |
Issue:
|
1 |
Year:
|
2011 |
Pages:
|
81-89 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let ${\mathcal L}({\mathcal H})$ be the algebra of all bounded linear operators on a complex Hilbert space ${\mathcal H}$. We characterize locally spectrally bounded linear maps from ${\mathcal L}({\mathcal H})$ onto itself. As a consequence, we describe linear maps from ${\mathcal L}({\mathcal H})$ onto itself that compress the local spectrum. (English) |
Keyword:
|
local spectrum |
Keyword:
|
local spectral radius |
Keyword:
|
linear preservers |
MSC:
|
47A10 |
MSC:
|
47A53 |
MSC:
|
47B49 |
idZBL:
|
Zbl 1216.47066 |
idMR:
|
MR2807711 |
DOI:
|
10.21136/MB.2011.141452 |
. |
Date available:
|
2011-03-31T11:29:09Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/141452 |
. |
Reference:
|
[1] Aiena, P.: Fredholm and Local Spectral Theory, with Applications to Multipliers.Kluwer Academic Publishers (2004). Zbl 1077.47001, MR 2070395 |
Reference:
|
[2] Akbari, S., Aryapoor, M.: On linear transformations preserving at least one eigenvalue.Proc. Amer. Math. Soc. 132 (2004), 1621-1625. Zbl 1041.15001, MR 2051122, 10.1090/S0002-9939-03-07262-9 |
Reference:
|
[3] Bendaoud, M., Bourhim, A.: Essentially spectrally bounded linear maps.Proc. Amer. Math. Soc. 92 (2009), 257-265. Zbl 1177.47048, MR 2496677 |
Reference:
|
[4] Bendaoud, M., Sarih, M.: Linear maps preserving the local spectral radius, preprint.. |
Reference:
|
[5] Torgašev, A.: On operators with the same local spectra.Czech. Math. J. 48 (1998), 77-83. MR 1614080, 10.1023/A:1022467611697 |
Reference:
|
[6] Bourhim, A., Miller, V. G.: Linear maps on $M_n(\mathbb{C})$ preserving the local spectral radius.Studia Math. 188 (2008), 67-75. MR 2430550, 10.4064/sm188-1-4 |
Reference:
|
[7] Bračič, J., Müller, V.: Local spectrum and local spectral radius at a fixed vector.Studia Math. 194 (2009), 155-162. MR 2534182 |
Reference:
|
[8] Chernoff, P. R.: Representations, automorphisms, and derivations of some operator algebras.J. Funct. Anal. 12 (1973), 257-289. Zbl 0252.46086, MR 0350442, 10.1016/0022-1236(73)90080-3 |
Reference:
|
[9] González, M., Mbekhta, M.: Linear maps on $M_{n}(\mathbb C)$ preserving the local spectrum.Linear Algebra Appl. 427 (2007), 176-182. Zbl 1127.15005, MR 2351350 |
Reference:
|
[10] Herstein, I. N.: Jordan homomorphisms.Trans. Amer. Math. Soc. 81 (1956), 331-341. Zbl 0073.02202, MR 0076751, 10.1090/S0002-9947-1956-0076751-6 |
Reference:
|
[11] Laursen, K. B., Neumann, M. M.: An Introduction to Local Spectral Theory.Oxford University Press, New York (2000). Zbl 0957.47004, MR 1747914 |
Reference:
|
[12] Richart, C. E.: General Theory of Banach Algebras.Van Nostrand, Princeton (1960). MR 0115101 |
Reference:
|
[13] Šemrl, P.: Spectrally bounded linear maps on $B(H)$.Quart. J. Math. Oxford 49 (1998), 87-92. MR 1617339, 10.1093/qmathj/49.1.87 |
. |