Previous |  Up |  Next

Article

Title: On algebras of generalized Latin squares (English)
Author: Katrnoška, František
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 136
Issue: 1
Year: 2011
Pages: 91-103
Summary lang: English
.
Category: math
.
Summary: The main result of this paper is the introduction of a notion of a generalized $R$-Latin square, which includes as a special case the standard Latin square, as well as the magic square, and also the double stochastic matrix. Further, the algebra of all generalized Latin squares over a commutative ring with identity is investigated. Moreover, some remarkable examples are added. (English)
Keyword: ring with identity
Keyword: homomorphism
Keyword: one-sided ideal
Keyword: two-sided ideal
Keyword: module
Keyword: bimodule
MSC: 05B15
MSC: 16S99
idZBL: Zbl 1224.05066
idMR: MR2807712
DOI: 10.21136/MB.2011.141453
.
Date available: 2011-03-31T11:30:39Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/141453
.
Reference: [1] Andrew, W. S.: Magic Squares and Cubes.Dover, New York (1960). MR 0114763
Reference: [2] Birkhoff, G.: Tres observaciones sobre el algebra lineal.Rev., Ser. A, Univ. Nac. Tucuman 5 (1946), 147-150. MR 0020547
Reference: [3] Cayley, A.: On the theory of groups.Proc. London Math. Soc. 9 (1877/78), 126-133.
Reference: [4] Davis, P.: Circulant Matrices.London (1970).
Reference: [5] Dènes, J., Keedwell, A. D.: Latin Squares and Their Applications.Akadémiai Kiadó, Budapest, (1974). MR 0351850
Reference: [6] Euler, L.: Recherches sur une nouvelle espace de carrés magiques.Verh. Zeeuwsch. Genootsch. Wetensch. Vlissengen 9 (1782), 85-239.
Reference: [7] Fano, G.: Sui postulati fundamentali della geometria proiectiva.Giorn. Math. 30 (1892), 106-112.
Reference: [8] Fisher, R. A.: The Design of Experiments.Olivier et Boyd, Edinburgh (1937).
Reference: [9] Hall, jun., M.: Combinatorial Theory.Blaisdell Publ. Comp., Toronto (1967). Zbl 0196.02401
Reference: [10] Herstein, I. N.: Rings with Involutions.Univ. of Chicago Press (1976). MR 0442017
Reference: [11] Hungerford, T. V.: Algebra.Springer, New York (1980). Zbl 0442.00002, MR 0600654
Reference: [12] Kárteszi, F.: Introduction to Finite Geometries.Akademiai Kiadò, Budapest (1976). MR 0423175
Reference: [13] Kasch, F.: Moduln und Ringe.Teubner, Stuttgart (1977). Zbl 0343.16001, MR 0429963
Reference: [14] Katrnoška, F.: Logics that are generated by idempotents.Lobachevskij J. Math. 15 (2004), 11-19. Zbl 1060.15018, MR 2120697
Reference: [15] Katrnoška, F.: Latin squares and the genetic code.Pokroky Mat. Fyz. Astronom. 52 (2007), 177-187 Czech. Zbl 1265.05078
Reference: [16] Kostrikin, A. I., Shafarewich, I. R.: Algebra I.Springer, Berlin (1990).
Reference: [17] Marcus, M.: Some properties and applications of doubly stochastic matrices.Amer. Math. Monthly 67 (1960), 215-221. Zbl 0092.01601, MR 0118732, 10.2307/2309679
Reference: [18] Marcus, M., Minc, H.: A Survey of Matrix Theory and Matrix Inequalities.Allyn and Bacon, Boston (1964). Zbl 0126.02404, MR 0162808
Reference: [19] Moufang, R.: Zur Struktur von alternativ Körpern.Math. Ann. 110 (1935), 416-430. MR 1512948, 10.1007/BF01448037
Reference: [21] Schafer, R. D.: Structure of genetic algebras.J. Amer. Math. 71 (1949), 121-135. Zbl 0034.02004, MR 0027751, 10.2307/2372100
Reference: [22] Singer, J.: A theorem in finite projective geometry and some applications to number theory.Trans. Amer. Math. Soc. 43 (1938), 377-385. Zbl 0019.00502, MR 1501951, 10.1090/S0002-9947-1938-1501951-4
Reference: [23] Singer, J.: A class of groups associated with Latin squares.Amer. Math. Monthly 67 (1960), 235-240. Zbl 0096.01202, MR 0124227, 10.2307/2309683
Reference: [24] Steinfeld, O.: Über die Struktursätze der Semiringe.Acta Math. Acad. Scient. Hung. 10 (1959), 149-155. Zbl 0087.02801, MR 0108523, 10.1007/BF02063296
Reference: [25] Wiegandt, R.: Über die Struktursätze der Halbringe.Ann. Univ. Sci. Budap. Rolando Eötvös, Sec. Math. 5 (1962), 51-68. Zbl 0123.00901, MR 0148712
Reference: [26] Wörz-Busekros, A.: Algebras in Genetics.Springer, Berlin, Heidelberg, New York (1980). MR 0599179
.

Files

Files Size Format View
MathBohem_136-2011-1_10.pdf 255.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo