Previous |  Up |  Next

Article

Title: On fuzzification of the notion of quantaloid (English)
Author: Solovyov, Sergey A.
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 46
Issue: 6
Year: 2010
Pages: 1025-1048
Summary lang: English
.
Category: math
.
Summary: The paper considers a fuzzification of the notion of quantaloid of K. I. Rosenthal, which replaces enrichment in the category of $\bigvee$-semilattices with that in the category of modules over a given unital commutative quantale. The resulting structures are called quantale algebroids. We show that their constitute a monadic category and prove a representation theorem for them using the notion of nucleus adjusted for our needs. We also characterize the lattice of nuclei on a free quantale algebroid. At the end of the paper, we prove that the category of quantale algebroids has a monoidal structure given by tensor product. (English)
Keyword: many-value topology
Keyword: monadic category
Keyword: nucleus
Keyword: quantale
Keyword: quantale algebra
Keyword: quantale algebroid
Keyword: quantale module
Keyword: quantaloid
Keyword: tensor product
MSC: 03E72
MSC: 06F07
MSC: 16G99
MSC: 18A40
MSC: 18B99
idZBL: Zbl 1218.06012
idMR: MR2797425
.
Date available: 2011-04-12T12:49:36Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/141464
.
Reference: [1] Abramsky, S., Vickers, S.: Quantales, observational logic and process semantics.Math. Struct. Comput. Sci. 3 (1993), 161–227. Zbl 0823.06011, MR 1224222, 10.1017/S0960129500000189
Reference: [2] Adámek, J., Herrlich, H., Strecker, G. E.: Abstract and Concrete Categories: The Joy of Cats.Dover Publications, Mineola, New York 2009. MR 1051419
Reference: [3] Anderson, F. W., Fuller, K. R.: Rings and Categories of Modules.Second edition. Springer-Verlag, 1992. Zbl 0765.16001, MR 1245487
Reference: [4] Betti, R., Kasangian, S.: Tree automata and enriched category theory.Rend. Ist. Mat. Univ. Trieste 17 (1985), 71–78. Zbl 0614.68045, MR 0863557
Reference: [5] Borceux, F.: Handbook of Categorical Algebra.Volume 2: Categories and Structures. Cambridge University Press, 1994. Zbl 0911.18001, MR 1313497
Reference: [6] Brown, C., Gurr, D.: A representation theorem for quantales.J. Pure Appl. Algebra 85 (1993), 1, 27–42. Zbl 0776.06011, MR 1207066, 10.1016/0022-4049(93)90169-T
Reference: [7] Chang, C. L.: Fuzzy topological spaces.J. Math. Anal. Appl. 24 (1968), 182–190. Zbl 0167.51001, MR 0236859, 10.1016/0022-247X(68)90057-7
Reference: [8] Dilworth, R. P.: Non-commutative residuated lattices.Trans. Amer. math. Soc. 46 (1939), 426–444. Zbl 0022.10402, MR 0000230
Reference: [9] Gierz, G., Hofmann, K., al., et: Continuous Lattices and Domains.Cambridge University Press, 2003. Zbl 1088.06001, MR 1975381
Reference: [10] Girard, J.: Linear logic.Theor. Comput. Sci. 50 (1987), 1–102. Zbl 0647.03016, 10.1016/0304-3975(87)90045-4
Reference: [11] Goguen, J. A.: L-fuzzy sets.J. Math. Anal. Appl. 18 (1967), 145–174. Zbl 0145.24404, MR 0224391, 10.1016/0022-247X(67)90189-8
Reference: [12] Goguen, J. A.: The fuzzy Tychonoff theorem.J. Math. Anal. Appl. 43 (1973), 734–742. Zbl 0278.54003, MR 0341365, 10.1016/0022-247X(73)90288-6
Reference: [13] Grillet, P. A.: Abstract Algebra.Second edition. Springer-Verlag, 2007. Zbl 1122.00001, MR 2330890
Reference: [14] Gylys, R.: Involutive and relational quantaloids.Lith. Math. J. 39 (1999), 4, 376–388. Zbl 0980.18004, MR 1803001, 10.1007/BF02465588
Reference: [15] Halmos, P.: Algebraic Logic.Chelsea Publishing Company, 1962. Zbl 0101.01101, MR 0131961
Reference: [16] Herrlich, H., Strecker, G. E.: Category Theory.Third edition. Heldermann Verlag, 2007. Zbl 1125.18300, MR 2377903
Reference: [17] Höhle, U.: Quantaloids as categorical basis for many valued mathematics.In: Abstracts of the 31st Linz Seminar on Fuzzy Set Theory (P. Cintula, E. P. Klement, L. N. Stout, eds.), Johannes Kepler Universität, Linz 2010, pp. 91–92.
Reference: [18] Hungerford, T.: Algebra.Springer-Verlag, 2003.
Reference: [19] Johnstone, P. T.: Stone Spaces.Cambridge University Press, 1982. Zbl 0499.54001, MR 0698074
Reference: [20] Joyal, A., Tierney, M.: An extension of the Galois theory of Grothendieck.Mem. Am. Math. Soc. 309 (1984), 1–71. Zbl 0541.18002, MR 0756176
Reference: [21] Kasangian, S., Rosebrugh, R.: Decomposition of automata and enriched category theory.Cah. Topologie Géom. Différ. Catég. 27 (1986), 4, 137–143. Zbl 0625.68040, MR 0885374
Reference: [22] Kelly, G. M.: Basic concepts of enriched category theory.Repr. Theory Appl. Categ. 10 (2005), 1–136. Zbl 1086.18001, MR 2177301
Reference: [23] Kruml, D., Paseka, J.: Algebraic and categorical aAspects of quantales.In: Handbook of Algebra (M. Hazewinkel, ed.), 5, Elsevier, 2008, pp. 323–362. MR 2523454
Reference: [24] Lawvere, F. W.: Metric spaces, generalized logic and closed categories.Repr. Theory Appl. Categ. 1 (2002), 1–37. Zbl 1078.18501, MR 1925933
Reference: [25] Lowen, R.: Fuzzy topological spaces and fuzzy compactness.J. Math. Anal. Appl. 56 (1976), 621–633. Zbl 0342.54003, MR 0440482, 10.1016/0022-247X(76)90029-9
Reference: [26] Lane, S. Mac: Categories for the Working Mathematician.Second edition. Springer-Verlag, 1998. MR 1712872
Reference: [27] Mitchell, B.: Rings with several objects.Adv. Math. 8 (1972), 1–161. Zbl 0232.18009, MR 0294454, 10.1016/0001-8708(72)90002-3
Reference: [28] Mulvey, C.: & Rend.Circ. Mat. Palermo II (1986), 12, 99–104. MR 0853151
Reference: [29] Mulvey, C. J., Pelletier, J. W.: On the quantisation of points.J. Pure Appl. Algebra 159 (2001), 231–295. Zbl 0983.18007, MR 1828940, 10.1016/S0022-4049(00)00059-1
Reference: [30] Mulvey, C. J., Pelletier, J. W.: On the quantisation of spaces.J. Pure Appl. Algebra 175 (2002), 1-3, 289–325. Zbl 1026.06018, MR 1935983
Reference: [31] Paseka, J.: Quantale Modules.Habilitation Thesis, Department of Mathematics, Faculty of Science, Masaryk University, Brno 1999.
Reference: [32] Paseka, J.: A note on nuclei of quantale modules.Cah. Topologie Géom. Différ. Catégoriques 43 (2002), 1, 19–34. Zbl 1015.06017, MR 1892106
Reference: [33] Pitts, A. M.: Applications of sup-lattice enriched category theory to sheaf theory.Proc. Lond. Math. Soc. III. 57 (1988), 3, 433–480. Zbl 0619.18005, MR 0960096
Reference: [34] Rosenthal, K. I.: Quantales and Their Applications.Addison Wesley Longman, 1990. Zbl 0703.06007, MR 1088258
Reference: [35] Rosenthal, K. I.: Free quantaloids.J. Pure Appl. Algebra 72 (1991), 1, 67–82. Zbl 0729.18007, MR 1115568, 10.1016/0022-4049(91)90130-T
Reference: [36] Rosenthal, K. I.: Girard quantaloids.Math. Struct. Comput. Sci. 2 (1992), 1, 93–108. Zbl 0761.18008, MR 1159501, 10.1017/S0960129500001146
Reference: [37] Rosenthal, K. I.: Quantaloidal nuclei, the syntactic congruence and tree automata.J. Pure Appl. Algebra 77 (1992), 2, 189–205. Zbl 0761.18009, MR 1149021, 10.1016/0022-4049(92)90085-T
Reference: [38] Rosenthal, K. I.: Quantaloids, enriched categories and automata theory.Appl. Categ. Struct. 3 (1995), 3, 279–301. Zbl 0833.18002, MR 1354679, 10.1007/BF00878445
Reference: [39] Rosenthal, K. I.: The Theory of Quantaloids.Addison Wesley Longman, 1996. Zbl 0845.18003, MR 1427263
Reference: [40] Solovjovs, S.: Powerset operator foundations for categorically-algebraic fuzzy sets theories.In: Abstracts of the 31st Linz Seminar on Fuzzy Set Theory (P. Cintula, E. P. Klement, L. N. Stout, ed.), Johannes Kepler Universität, Linz 2010, pp. 143–151.
Reference: [41] Solovyov, S.: Completion of partially ordered sets.Discuss. Math., Gen. Algebra Appl. 27 (2007), 59–67. Zbl 1141.18005, MR 2319333, 10.7151/dmgaa.1119
Reference: [42] Solovyov, S.: On coproducts of quantale algebras.Math. Stud. (Tartu) 3 (2008), 115–126. Zbl 1160.06007, MR 2497770
Reference: [43] Solovyov, S.: On the category $Q$-Mod.Algebra Univers. 58 (2008), 35–58. Zbl 1145.06008, MR 2375280
Reference: [44] Solovyov, S.: A representation theorem for quantale algebras.Contr. Gen. Alg. 18 (2008), 189–198. Zbl 1147.06010, MR 2407586
Reference: [45] Solovyov, S.: Sobriety and spatiality in varieties of algebras.Fuzzy Sets Syst. 159 (2008), 19, 2567–2585. Zbl 1177.54004, MR 2450327
Reference: [46] Solovyov, S.: From quantale algebroids to topological spaces: fixed- and variable-basis approaches.Fuzzy Sets Syst. 161 (2010), 9, 1270–1287. Zbl 1193.54010, MR 2603069
Reference: [47] Solovyov, S.: On monadic quantale algebras: basic properties and representation theorems.Discuss. Math., Gen. Algebra Appl. 30 (2010), 1, 91–118. Zbl 1220.03052, MR 2762580, 10.7151/dmgaa.1164
Reference: [48] Street, R.: Elementary cosmoi I.Lect. Notes Math. 420 (1974), 134–180. Zbl 0325.18005, MR 0354813, 10.1007/BFb0063103
Reference: [49] Street, R.: Cauchy characterization of enriched categories.Repr. Theory Appl. Categ. 4 (2004), 1–16. Zbl 1099.18005, MR 2048315
Reference: [50] Street, R.: Enriched categories and cohomology.Repr. Theory Appl. Categ. 14 (2005), 1–18. Zbl 1085.18010, MR 2219705
Reference: [51] Stubbe, I.: Categorical structures enriched in a quantaloid: categories, distributors and functors.Theory Appl. Categ. 14 (2005), 1–45. Zbl 1079.18005, MR 2122823
Reference: [52] Stubbe, I.: Categorical structures enriched in a quantaloid: Orders and ideals over a base quantaloid.Appl. Categ. Struct. 13 (2005), 3, 235–255. Zbl 1093.06013, MR 2167792, 10.1007/s10485-004-7421-5
Reference: [53] Stubbe, I.: Categorical structures enriched in a quantaloid: regular presheaves, regular semicategories.Cah. Topol. Géom. Différ. Catég. 46 (2005), 2, 99–121. Zbl 1086.18005, MR 2153892
Reference: [54] Stubbe, I.: Categorical structures enriched in a quantaloid: tensored and cotensored categories.Theory Appl. Categ. 16 (2006), 283–306. Zbl 1119.18005, MR 2223039
Reference: [55] Stubbe, I.: $\cal Q$-modules are $\cal Q$-suplattices.Theory Appl. Categ. 19 (2007), 4, 50–60. MR 2369018
Reference: [56] Ward, M.: Residuation in structures over which a multiplication is defined.Duke math. J. 3 (1937), 627–636. Zbl 0018.19903, MR 1546017, 10.1215/S0012-7094-37-00351-X
Reference: [57] Ward, M.: Structure residuation.Ann. Math. 39 (1938), 558–568. Zbl 0019.28902, MR 1503424, 10.2307/1968634
Reference: [58] Ward, M., Dilworth, R. P.: Residuated lattices.Trans. Am. Math. Soc. 45 (1939), 335–354. Zbl 0021.10801, MR 1501995, 10.1090/S0002-9947-1939-1501995-3
.

Files

Files Size Format View
Kybernetika_46-2010-6_9.pdf 406.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo