Previous |  Up |  Next

Article

Title: Some new results about Brooks-Jewett and Dieudonné-type theorems in $(l)$-groups (English)
Author: Boccuto, Antonio
Author: Candeloro, Domenico
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 46
Issue: 6
Year: 2010
Pages: 1049-1060
Summary lang: English
.
Category: math
.
Summary: In this paper we present some new versions of Brooks-Jewett and Dieudonné-type theorems for $(l)$-group-valued measures. (English)
Keyword: $(l)$-group
Keyword: order convergence
Keyword: regular measure
Keyword: Brooks–Jewett theorem
Keyword: Dieudonné theorem
MSC: 28B05
MSC: 28B15
idZBL: Zbl 1210.28015
idMR: MR2797426
.
Date available: 2011-04-12T12:50:42Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/141465
.
Reference: [1] Bernau, S. J.: Unique representation of Archimedean lattice group and normal Archimedean lattice rings.Proc. London Math. Soc. 15 (1965), 599–631. MR 0182661
Reference: [2] Boccuto, A.: Dieudonné-type theorems for means with values in Riesz spaces.Tatra Mountains Math. Publ. 8 (1996), 29-42. Zbl 0918.28009, MR 1475257
Reference: [3] Boccuto, A.: Integration in Riesz spaces with respect to $(D)$-convergence.Tatra Mountains Math. Publ. 10 (1997), 33–54. Zbl 0918.28010, MR 1469280
Reference: [4] Boccuto, A.: Egorov property and weak $\sigma $-distributivity in Riesz spaces.Acta Math. (Nitra) 6 (2003), 61–66.
Reference: [5] Boccuto, A., Candeloro, D.: Dieudonné-type theorems for set functions with values in $(l)$-groups.Real Analysis Exchange 27 (2001/2002), 473–484. MR 1922663
Reference: [6] Boccuto, A., Candeloro, D.: Uniform $(s)$-boundedness and convergence results for measures with values in complete $(l)$-groups.J. Math. Anal. Appl. 265 (2002), 170–194. Zbl 1006.28012, MR 1874264, 10.1006/jmaa.2001.7715
Reference: [7] Boccuto, A., Papanastassiou, N.: Schur and Nikodym convergence-type theorems in Riesz spaces with respect to the (r)-convergence.Atti Sem. Mat. Fis. Univ. Modena e Reggio Emilia 55 (2007), 33–46. Zbl 1206.28020, MR 2458785
Reference: [8] Brooks, J. K.: On a theorem of Dieudonné.Adv. Math. 36 (1980), 165–168. Zbl 0441.28006, MR 0574646, 10.1016/0001-8708(80)90014-6
Reference: [9] Brooks, J. K., Jewett, R. S.: On finitely additive vector measures.Proc. Nat. Acad. Sci. U.S.A. 67 (1970), 1294–1298. Zbl 0216.09602, MR 0269802, 10.1073/pnas.67.3.1294
Reference: [10] Candeloro, D.: Sui teoremi di Vitali–Hahn–Saks, Dieudonné e Nikodým.Rend. Circ. Mat. Palermo, Ser. II 8 (1985), 439–445. MR 0881420
Reference: [11] Candeloro, D., Letta, G.: Sui teoremi di Vitali–Hahn–Saks e di Dieudonné. Rend. Accad. Naz. Sci. Detta dei XL 9 (1985), 203–213. MR 0899250
Reference: [12] Das, R., Papanastassiou, N.: Some types of convergence of sequences of real valued functions.Real Anal. Exch. 29 (2003/2004), 43–58. MR 2061292
Reference: [13] Dieudonné, J.: Sur la convergence des suites de mesures de Radon.An. Acad. Brasil. Ci. 23 (1951), 21–38. MR 0042496
Reference: [14] Dunford, N., Schwartz, J.  T.: Linear Operators I.General Theory, Interscience, New York 1958. Zbl 0084.10402, MR 0117523
Reference: [15] Luxemburg, W. A. J., Zaanen, A. C.: Riesz Spaces, I.North-Holland Publishing Co. 1971. MR 0511676
Reference: [16] Riečan, B., Neubrunn, T.: Integral, Measure and Ordering.Kluwer Academic Publishers, Ister Science, Bratislava 1997. MR 1489521
Reference: [17] Swartz, C.: The Nikodým boundedness Theorem for lattice-valued measures.Arch. Math. 53 (1989), 390–393. Zbl 0661.28003, MR 1016003, 10.1007/BF01195219
Reference: [18] Vulikh, B. Z.: Introduction to the theory of partially ordered spaces.Wolters – Noordhoff Sci. Publ., Groningen 1967. Zbl 0186.44601, MR 0224522
.

Files

Files Size Format View
Kybernetika_46-2010-6_10.pdf 255.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo