Previous |  Up |  Next

Article

Title: Quantum Bochner theorems and incompatible observables (English)
Author: Hudson, Robin L.
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 46
Issue: 6
Year: 2010
Pages: 1061-1068
Summary lang: English
.
Category: math
.
Summary: A quantum version of Bochner's theorem characterising Fourier transforms of probability measures on locally compact Abelian groups gives a characterisation of the Fourier transforms of Wigner quasi-joint distributions of position and momentum. An analogous quantum Bochner theorem characterises quasi-joint distributions of components of spin. In both cases quantum states in which a true distribution exists are characterised by the intersection of two convex sets. This may be described explicitly in the spin case as the intersection of the Bloch sphere with a regular tetrahedron whose edges touch the sphere. (English)
Keyword: Bochner's Theorem
Keyword: multiplier-nonnegative-definiteness
Keyword: Wigner quasidensities
Keyword: Pauli matrices
MSC: 60B15
MSC: 81S30
idZBL: Zbl 1219.81175
idMR: MR2797427
.
Date available: 2011-04-12T12:51:25Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/141466
.
Reference: [1] Bochner, S.: Lectures on Fourier Integrals.Princeton University Press 1959. Zbl 0085.31802, MR 0107124
Reference: [2] Cushen, C. D.: Quasi-characteristic functions of canonical observcables in quantum mechanics.Nottingham PhD Thesis 1970.
Reference: [3] Holevo, A. S.: Veroiatnostnye i statistichneskie aspekty kvantovoi teorii.Nauka, Moscow 1980, English translation Probabilistic and statistical aspects of quantum theory, North Holland 1982. MR 0681693
Reference: [4] Hudson, R. L.: When is the Wigner quasi-probability density nonnegative? Rep.Math. Phys. 6 (1974), 249–252. MR 0384019, 10.1016/0034-4877(74)90007-X
Reference: [5] Gikhman, I. I., Skorohod, A. V.: Introduction to the Theory of Random Processes.Philadelphia 1969. MR 0247660
Reference: [6] Neumann, J. von: Die Eindeutigkeit der Schrõdingerschen Operatoren.Math. Ann. 104 (1931), 570–578. MR 1512685, 10.1007/BF01457956
Reference: [7] Pool, J. C. T.: Mathematical aspects of the Weyl correspondence.J. Math. Phys. 7 (1966), 66–76. Zbl 0139.45903, MR 0204049, 10.1063/1.1704817
Reference: [8] Rudin, W.: Fourier Analysis on Groups.Interscience New York 1962. Zbl 0107.09603, MR 0152834
Reference: [9] Wigner, E.: On the quantum correction to thermodynamic equilibrium.Phys. Rev. 40 (1932), 749–759. 10.1103/PhysRev.40.749
.

Files

Files Size Format View
Kybernetika_46-2010-6_11.pdf 237.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo