Previous |  Up |  Next

Article

Title: $T$-extension as a method of construction of a generalized aggregation operator (English)
Author: Lebedinska, Julija
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 46
Issue: 6
Year: 2010
Pages: 1078-1097
Summary lang: English
.
Category: math
.
Summary: Generalized aggregation operators are the tool for aggregation of fuzzy sets. The apparatus was introduced by Takači in [11]. $T$-extension is a construction method of a generalized aggregation operator and we study it in the paper. We observe the behavior of a $T$-extension with respect to different order relations and we investigate properties of the construction. (English)
Keyword: aggregation operator
Keyword: t-norm
Keyword: $T$-extension
MSC: 03E72
MSC: 94D05
idZBL: Zbl 1225.94033
idMR: MR2797429
.
Date available: 2011-04-12T12:53:42Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/141468
.
Reference: [1] Calvo, T., Kolesárová, A., Komorníková, M., Mesiar, R.: Aggregation Operators: Properties, Classes and Construction methods.In: Aggregation Operators: New Trends and Applications. Studies in Fuzziness and Soft Computing (T.Calvo, G. Mayor, and R.Mesiar, eds.), Physica – Verlag, New York 2002, pp. 3–104. Zbl 1039.03015, MR 1936384
Reference: [2] Dubois, D., Ostasiewicz, W., H.Prade: Fuzzy Sets: History and Basic Notions: Fundamentals of Fuzzy Sets.Kluwer Academic Publ., Boston, Dodrecht, London 1999. MR 1890230
Reference: [3] Grabisch, M., Marichal, J-L., Mesiar, R., Pap, E.: Aggregation Functions.Cambridge University Press, New York 2009. Zbl 1196.00002, MR 2538324
Reference: [4] Klement, E., Mesiar, R., Pap, E.: Triangular Norms.Series: Trends in Logic, Vol. 8. Kluwer Academic Publishers, Dordrecth 2000. Zbl 1010.03046, MR 1790096
Reference: [5] Kruse, R., Gebhardt, J., Klawon, F.: Foundations of Fuzzy Systems.John Wiley and Sons, Chichester, New York, Birsbane, Toronto, Singapore 1998.
Reference: [6] Lebedinska, J.: $\gamma $-aggregation operators and some aspects of generalized aggregation problem.Math. Model. Anal. 15 (2010), 1, 83–96. Zbl 1203.03083, MR 2641928, 10.3846/1392-6292.2010.15.83-96
Reference: [7] Lebedinska, J.: Fuzzy Matrices and Generalized Aggregation Operators: Theoretical Foundations and Possible Applications.PhD. Theses, University of Latvia, Riga 2010.
Reference: [8] Merigo, J. M., Ramon, M. C.: The induced generalized hybrid averaging operator and its application in financial decision making.Internat. J. of Business, Economics, Finance and Management Sciences 1 (2009), 2, 95–101.
Reference: [9] Rudas, I. J., Fodor, J.: Information Aggregation in Intelligent Systems Using Generalized Operators.Internat. J. Computers, Communications and Control 1 (2006),1, 47–57.
Reference: [10] Šostaks, A.: $L$-kopas un $L$-vērtīgas struktūras (in Latvian).Latvijas Universitāte, Mācību grāmata, Rīga 2003.
Reference: [11] Takači, A.: General aggregation operators acting on fuzzy numbers induced by ordinary aggregation operators.Novi Sad J. Math. 33 (2003), 2, 67–76. Zbl 1202.03061, MR 2046163
Reference: [12] Yager, R.: Generalized OWA aggregation operators.Fuzzy Optimization and Decision Making 3 (2004), 1, 93–107. Zbl 1057.90032, MR 2047106, 10.1023/B:FODM.0000013074.68765.97
.

Files

Files Size Format View
Kybernetika_46-2010-6_13.pdf 297.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo