Previous |  Up |  Next

Article

Title: The Choquet integral as Lebesgue integral and related inequalities (English)
Author: Mesiar, Radko
Author: Li, Jun
Author: Pap, Endre
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 46
Issue: 6
Year: 2010
Pages: 1098-1107
Summary lang: English
.
Category: math
.
Summary: The integral inequalities known for the Lebesgue integral are discussed in the framework of the Choquet integral. While the Jensen inequality was known to be valid for the Choquet integral without any additional constraints, this is not more true for the Cauchy, Minkowski, Hölder and other inequalities. For a fixed monotone measure, constraints on the involved functions sufficient to guarantee the validity of the discussed inequalities are given. Moreover, the comonotonicity of the considered functions is shown to be a sufficient constraint ensuring the validity of all discussed inequalities for the Choquet integral, independently of the underlying monotone measure. (English)
Keyword: Choquet integral
Keyword: comonotone functions
Keyword: integral inequalities
Keyword: monotone measure
Keyword: modularity
MSC: 26D15
MSC: 28E10
idZBL: Zbl 1210.28025
idMR: MR2797430
.
Date available: 2011-04-12T12:54:44Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/141469
.
Reference: [1] Benvenuti, P., Mesiar, R., Vivona, D.: Monotone set functions-based integrals.In: Handbook of Measure Theory (E. Pap, ed.), Vol. II, Elsevier Science 2002, pp. 1329–1379. Zbl 1099.28007, MR 1954643
Reference: [2] Denneberg, D.: Non–Additive Measure and Integral.Kluwer Academic Publishers, Dordrecht 1994. Zbl 0826.28002, MR 1320048
Reference: [3] Choquet, G.: Theory of capacities.Ann. Inst. Fourier 5 (1953-54), 131–295. MR 0080760
Reference: [4] Flores-Franulič, A., Roman-Flores, H.: A Chebyshev type inequality for fuzzy integrals.J. Appl. Math. Comput. 190 (2007), 1178–1184. Zbl 1129.26021, MR 2339711, 10.1016/j.amc.2007.02.143
Reference: [5] Klement, E. P., Mesiar, R., Pap, E.: A universal integral as common frame for Choquet and Sugeno integral.IEEE Trans. Fuzzy Systems 18 (2010), 178–187. 10.1109/TFUZZ.2009.2039367
Reference: [6] Mesiar, R., Ouyang, Y.: General Chebyshev type inequalities for Sugeno.Fuzzy Sets and Systems 160 (2009), 58–64. Zbl 1183.28035, MR 2469431
Reference: [7] Narukawa, Y.: Distances defined by Choquet integral.In: Proc. IEEE Internat. Conference on Fuzzy Systems, London 2007, CD–ROM [#1159].
Reference: [8] Ouyang, Y., Mesiar, R.: On the Chebyshev type inequality for seminormed fuzzy integrals.Applied Math. Letters 22 (2009), 1810–1815. MR 2558545, 10.1016/j.aml.2009.06.024
Reference: [9] Ouyang, Y., Mesiar, R., Agahi, H.: An inequality related to Minkowski type for Sugeno integrals. Inform. Sci. 180 (2010), 2793–2801. Zbl 1193.28016, MR 2644587, 10.1016/j.ins.2010.03.018
Reference: [10] Pap, E.: Null–Additive Set Functions.Kluwer, Dordrecht 1995. Zbl 0968.28010, MR 1368630
Reference: [11] Roman-Flores, H., Flores–Franuli, A., Chalco-Cano, Y.: A Jensen type inequality for fuzzy integrals.Inform. Sci. 177 (2007), 3192–3201. MR 2340853, 10.1016/j.ins.2007.02.006
Reference: [12] Schmeidler, D.: Integral representation without additivity.Proc. Amer. Math. Soc. 97 (1986), 255–261. Zbl 0687.28008, MR 0835875, 10.1090/S0002-9939-1986-0835875-8
Reference: [13] Schmeidler, D.: Subjective probability and expected utility without additivity.Econometrica 57 (1989), 571–587. Zbl 0672.90011, MR 0999273, 10.2307/1911053
Reference: [14] Sugeno, M., Narukawa, Y., Murofushi, T.: Choquet integral and fuzzy measures on locally compact space.Fuzzy Sets and Systems 99, (1998), 2, 205–211. Zbl 0977.28012, MR 1646177
Reference: [15] Wang, R.-S.: Some inequalities and convergence theorems for Choquet integral.J. Appl. Math. Comput., DOI 10.1007/212190/009/0358-y.
Reference: [16] Wang, Z., Klir, G. J.: Generalized Measure Theory.Springer, Boston 2009. Zbl 1184.28002, MR 2453907
.

Files

Files Size Format View
Kybernetika_46-2010-6_14.pdf 235.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo