Previous |  Up |  Next

Article

Title: On the compound Poisson-gamma distribution (English)
Author: Withers, Christopher
Author: Nadarajah, Saralees
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 47
Issue: 1
Year: 2011
Pages: 15-37
Summary lang: English
.
Category: math
.
Summary: The compound Poisson-gamma variable is the sum of a random sample from a gamma distribution with sample size an independent Poisson random variable. It has received wide ranging applications. In this note, we give an account of its mathematical properties including estimation procedures by the methods of moments and maximum likelihood. Most of the properties given are hitherto unknown. (English)
Keyword: compound Poisson-gamma
Keyword: estimation
Keyword: expansions
Keyword: moments
MSC: 62E15
MSC: 62E17
MSC: 62E20
idZBL: Zbl 1209.62013
idMR: MR2807861
.
Date available: 2011-04-12T13:00:38Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/141475
.
Reference: [1] Buishand, T. A.: Stochastic Modelling of Daily Rainfall Sequences.Wageningen, Netherlands, Mededelingen Landbouwhogeschool 1977.
Reference: [2] Choo, L., Walker, S. G.: A new approach to investigating spatial variations of disease.J. Roy. Statist. Soc. A 171 (2008), 395–405. MR 2427340, 10.1111/j.1467-985X.2007.00503.x
Reference: [3] Christensen, A., Melgaard, H., Iwersen, J.: Environmental monitoring based on a hierarchical Poisson-gamma model.J. Quality Technology 35 (2003), 275–285.
Reference: [4] Comtet, L.: Advanced Combinatorics.Reidel Publishing Company, Dordrecht 1974. Zbl 0283.05001, MR 0460128
Reference: [5] Fisher, R. A., Cornish, E. A.: The percentile points of distributions having known cumulants.Technometrics 2 (1960), 209–225. Zbl 0095.13704, 10.1080/00401706.1960.10489895
Reference: [6] Fukasawa, T., Basawa, I. V.: Estimation for a class of generalized state-space time series models.Statist. Probab. Lett. 60 (2002), 459–473. Zbl 1056.62098, MR 1947185, 10.1016/S0167-7152(02)00325-5
Reference: [7] Galue, L.: A generalized hyper Poisson-gamma distribution associated with the $H$-function.Hadronic J. 30 (2007), 63–79. Zbl 1137.62004, MR 2356751
Reference: [8] Gradshteyn, I. S., Ryzhik, I. M.: Tables of Integrals, Series and Products.Fourth edition. Academic Press, New York 1965.
Reference: [9] Hadjicostas, P., Berry, S. M.: Improper and proper posteriors with improper priors in a Poisson-gamma hierarchical model.Test 8 (1999), 147–166. Zbl 0945.62032, MR 1707655, 10.1007/BF02595867
Reference: [10] Henderson, R., Shimakura, S.: A serially correlated gamma frailty model for longitudinal count data.Biometrika 90 (2003), 355–366. Zbl 1034.62115, MR 1986652, 10.1093/biomet/90.2.355
Reference: [11] Kendall, M., Stuart, A.: The Advanced Theory of Statistics.Volume 1. MacMillan, New York 1977. Zbl 0353.62013, MR 0467977
Reference: [12] Cam, L. Le: A stochastic description of precipitation.In: Proc. Fourth Berkeley Symposium on Mathematical Statistics and Probability (J. Neyman, ed.), University of California Press, Berkeley 1961, volume 3, pp. 165–186. Zbl 0122.37005, MR 0135598
Reference: [13] Nahmias, S., Demmy, W. S.: The logarithmic Poisson gamma-distribution – a model for leadtime demand.Naval Research Logistics 29 (1982), 667–677. Zbl 0538.90022, 10.1002/nav.3800290413
Reference: [14] Ozturk, A.: On the study of a probability distribution for precipitation totals.J. Appl. Meteorology 20 (1981), 1499–1505. 10.1175/1520-0450(1981)020<1499:OTSOAP>2.0.CO;2
Reference: [15] Revfeim, K. J. A.: Comments “On the study of a probability distribution for precipitation totals”.J. Appl. Meteology 21 (1982), 97–100.
Reference: [16] Revfeim, K. J. A.: A theoretically derived distribution for annual rainfall totals.Internat. J. Climatology 10 (1990), 647–650. 10.1002/joc.3370100607
Reference: [17] Withers, C. S.: Asymptotic expansions for distributions and quantiles with power series cumulants.J. Roy. Statist. Soc. B 46 (1984), 389–396. Zbl 0586.62026, MR 0790623
Reference: [18] Withers, C. S., Nadarajah, S.: Saddlepoint Expansions in Terms of Bell Polynomials.Technical Report, Applied Mathematics Group, Industrial Research Ltd., Lower Hutt, New Zealand 2010. Avaiable on-line at http://arxiv.org/.
Reference: [19] Xia, N., Zhang, Z.-Z., Ying, Z.-L.: Convergence rate of the L-N estimator in Poisson-gamma models.Acta Math. Appl. Sinica 22 (2006), 639–654. Zbl 1104.62082, MR 2248528, 10.1007/s10255-006-0338-z
.

Files

Files Size Format View
Kybernetika_47-2011-1_2.pdf 1.358Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo