Title:
|
$\pi $-mappings in $ls$-Ponomarev-systems (English) |
Author:
|
Van Dung, Nguyen |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
47 |
Issue:
|
1 |
Year:
|
2011 |
Pages:
|
35-49 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We use the $ls$-Ponomarev-system $(f, M, X, \lbrace \mathcal{P}_{\lambda ,n}\rbrace )$, where $M$ is a locally separable metric space, to give a consistent method to construct a $\pi $-mapping (compact mapping) with covering-properties from a locally separable metric space $M$ onto a space $X$. As applications of these results, we systematically get characterizations of certain $\pi $-images (compact images) of locally separable metric spaces. (English) |
Keyword:
|
sequence-covering |
Keyword:
|
compact-covering |
Keyword:
|
pseudo-sequence-covering |
Keyword:
|
sequentially-quotient |
Keyword:
|
$\pi $-mapping |
Keyword:
|
$ls$-Ponomarev-system |
Keyword:
|
double point-star cover |
MSC:
|
54E40 |
MSC:
|
54E99 |
idZBL:
|
Zbl 1240.54101 |
idMR:
|
MR2813545 |
. |
Date available:
|
2011-05-23T12:16:46Z |
Last updated:
|
2013-09-19 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/141508 |
. |
Reference:
|
[1] An, T. V., Dung, N. V.: On $\pi $–images of locally separable metric spaces.Internat. J. Math. Math. Sci. (2008), 1–8. Zbl 1147.54318, 10.1155/2008/145683 |
Reference:
|
[2] An, T. V., Dung, N. V.: On $ls$–Ponomarev systems and $s$–images of locally separable metric spaces.Lobachevskii J. Math. 29 (2008 (3)), 111–118. Zbl 1168.54013, MR 2434889, 10.1134/S1995080208030013 |
Reference:
|
[3] Arhangel’skii, A. V.: Mappings and spaces.Russian Math. Surveys 21 (1966), 115–162. MR 0227950, 10.1070/RM1966v021n04ABEH004169 |
Reference:
|
[4] Boone, J. R., Siwiec, F.: Sequentially quotient mappings.Czechoslovak Math. J. 26 (1976), 174–182. Zbl 0334.54003, MR 0402689 |
Reference:
|
[5] Engelking, R.: General topology.PWN – Polish Scientific Publishers, Warsaw, 1977. Zbl 0373.54002, MR 0500780 |
Reference:
|
[6] Ge, Y.: On compact images of locally separable metric spaces.Topology Proc. 27 (1) (2003), 351–360. Zbl 1072.54020, MR 2048944 |
Reference:
|
[7] Ge, Y.: On pseudo–sequence–covering $\pi $–images of metric spaces.Mat. Vesnik 57 (2005), 113–120. MR 2194600 |
Reference:
|
[8] Ge, Y.: On three equivalences concerning Ponomarev–systems.Arch. Math. (Brno) 42 (2006), 239–246. Zbl 1164.54363, MR 2260382 |
Reference:
|
[9] Ikeda, Y., Liu, C., Tanaka, Y.: Quotient compact images of metric spaces, and related matters.Topology Appl. 122 (2002), 237–252. Zbl 0994.54015, MR 1919303, 10.1016/S0166-8641(01)00145-6 |
Reference:
|
[10] Li, Z.: On $\pi $–$s$–images of metric spaces.nternat. J. Math. Math. Sci. 7 (2005), 1101–1107. Zbl 1082.54023, 10.1155/IJMMS.2005.1101 |
Reference:
|
[11] Lin, S.: Point-countable covers and sequence-covering mappings.Chinese Science Press, Beijing, 2002. Zbl 1004.54001, MR 1939779 |
Reference:
|
[12] Lin, S., Liu, C, Dai, M.: Images on locally separable metric spaces.Acta Math. Sinica (N.S.) 13 (1) (1997), 1–8. Zbl 0881.54014, MR 1465530, 10.1007/BF02560519 |
Reference:
|
[13] Lin, S., Yan, P.: Notes on $cfp$-covers.Comment. Math. Univ. Carolin. 44 (2) (2003), 295–306. Zbl 1100.54021, MR 2026164 |
Reference:
|
[14] Michael, E.: A note on closed maps and compact subsets.Israel J. Math. 2 (1964), 173–176. MR 0177396, 10.1007/BF02759940 |
Reference:
|
[15] Michael, E.: $\aleph _0$–spaces.J. Math. Mech. 15 (1966), 983–1002. MR 0206907 |
Reference:
|
[16] Ponomarev, V. I.: Axiom of countability and continuous mappings.Bull. Polish Acad. Sci. Math. 8 (1960), 127–133. MR 0116314 |
Reference:
|
[17] Siwiec, F.: Sequence-covering and countably bi–quotient mappings.General Topology Appl. 1 (1971), 143–154. Zbl 0218.54016, MR 0288737, 10.1016/0016-660X(71)90120-6 |
Reference:
|
[18] Tanaka, Y.: Theory of $k$–networks II.Questions Answers Gen. Topology 19 (2001), 27–46. Zbl 0970.54023, MR 1815344 |
Reference:
|
[19] Tanaka, Y., Ge, Y.: Around quotient compact images of metric spaces, and symmetric spaces.Houston J. Math. 32 (1) (2006), 99–117. Zbl 1102.54034, MR 2202355 |
Reference:
|
[20] Yan, P.: On the compact images of metric spaces.J. Math. Study 30 (2) (1997), 185–187. MR 1468151 |
Reference:
|
[21] Yan, P.: On strong sequence–covering compact mappings.Northeast. Math. J. 14 (1998), 341–344. Zbl 0927.54030, MR 1685267 |
. |