Title:
|
Stratonovich-Weyl correspondence for discrete series representations (English) |
Author:
|
Cahen, Benjamin |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
47 |
Issue:
|
1 |
Year:
|
2011 |
Pages:
|
51-68 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $M=G/K$ be a Hermitian symmetric space of the noncompact type and let $\pi $ be a discrete series representation of $G$ holomorphically induced from a unitary character of $K$. Following an idea of Figueroa, Gracia-Bondìa and Vàrilly, we construct a Stratonovich-Weyl correspondence for the triple $(G, \pi , M)$ by a suitable modification of the Berezin calculus on $M$. We extend the corresponding Berezin transform to a class of functions on $M$ which contains the Berezin symbol of $d\pi (X)$ for $X$ in the Lie algebra $\mathfrak{g}$ of $G$. This allows us to define and to study the Stratonovich-Weyl symbol of $d\pi (X)$ for $X\in \mathfrak{g}$. (English) |
Keyword:
|
Stratonovich-Weyl correspondence |
Keyword:
|
Berezin quantization |
Keyword:
|
Berezin transform |
Keyword:
|
semisimple Lie group |
Keyword:
|
coadjoint orbits |
Keyword:
|
unitary representation |
Keyword:
|
Hermitian symmetric space of the noncompact type |
Keyword:
|
discrete series representation |
Keyword:
|
reproducing kernel Hilbert space |
Keyword:
|
coherent states |
MSC:
|
22E46 |
MSC:
|
32M15 |
MSC:
|
46E22 |
MSC:
|
81S10 |
idZBL:
|
Zbl 1240.22011 |
idMR:
|
MR2813546 |
. |
Date available:
|
2011-05-23T12:19:08Z |
Last updated:
|
2013-09-19 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/141509 |
. |
Reference:
|
[1] Ali, S. T., Englis, M.: Quantization methods: a guide for physicists and analysts.Rev. Math. Phys. 17 (4) (2005), 391–490. Zbl 1075.81038, MR 2151954, 10.1142/S0129055X05002376 |
Reference:
|
[2] Arazy, J., Upmeier, H.: Invariant symbolic calculi and eigenvalues of invariant operators on symmeric domains.Function spaces, interpolation theory and related topics, Lund, de Gruyter, Berlin, 2002, pp. 151–211. MR 1943284 |
Reference:
|
[3] Arazy, J., Upmeier, H.: Weyl Calculus for Complex and Real Symmetric Domains.Harmonic analysis on complex homogeneous domains and Lie groups (Rome, 2001), vol. 13 (3–4), Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 2002, pp. 165–181. Zbl 1150.43302, MR 1984098 |
Reference:
|
[4] Arnal, D., Cahen, M., Gutt, S.: Exponential and holomorphic discrete series.Bull. Soc. Math. Belg. Sér. B 41 (1989), 207–227. Zbl 0697.22010, MR 1022747 |
Reference:
|
[5] Arratia, O., Del Olmo, M. A.: Moyal quantization on the cylinder.Rep. Math. Phys. 40 (1997), 149–157. Zbl 0904.58022, MR 1614685, 10.1016/S0034-4877(97)85911-3 |
Reference:
|
[6] Ballesteros, A., Gadella, M., Del Olmo, M. A.: Moyal quantization of $2+1$–dimensional Galilean systems.J. Math. Phys. 33 (1992), 3379–3386. Zbl 0788.22025, MR 1182909, 10.1063/1.529939 |
Reference:
|
[7] Berezin, F. A.: Quantization.Math. USSR–Izv. 8 (1974), 1109–1165, Russian. Zbl 0312.53049 |
Reference:
|
[8] Berezin, F. A.: Quantization in complex symmetric domains.Math. USSR–Izv. 9 (1975), 341–379. |
Reference:
|
[9] Brif, C., Mann, A.: Phase–space formulation of quantum mechanics and quantum–state reconstruction for physical systems with Lie–group symmetries.Phys. Rev. A 59 (2) (1999), 971–987. MR 1679730, 10.1103/PhysRevA.59.971 |
Reference:
|
[10] Cahen, B.: Contraction de $SU(1,1)$ vers le groupe de Heisenberg.Mathematical works, Part XV, Luxembourg: Université du Luxembourg, Séminaire de Mathématique, 2004, pp. 19–43. Zbl 1074.22005, MR 2143420 |
Reference:
|
[11] Cahen, B.: Weyl quantization for semidirect products.Differential Geom. Appl. 25 (2007), 177–190. Zbl 1117.81087, MR 2311733, 10.1016/j.difgeo.2006.08.005 |
Reference:
|
[12] Cahen, B.: Berezin quantization on generalized flag manifolds.Math. Scand. 105 (2009), 66–84. Zbl 1183.22006, MR 2549798 |
Reference:
|
[13] Cahen, B.: Contraction of discrete series via Berezin quantization.J. Lie Theory 19 (2009), 291–310. Zbl 1185.22007, MR 2572131 |
Reference:
|
[14] Cahen, B.: Berezin quantization for discrete series.Beiträge Algebra Geom. 51 (2010), 301–311. MR 2682458 |
Reference:
|
[15] Cahen, B.: Stratonovich–Weyl correspondence for compact semisimple Lie groups.Rend. Circ. Mat. Palermo (2) 59 (2010), 331–354. Zbl 1218.22008, MR 2745515, 10.1007/s12215-010-0026-y |
Reference:
|
[16] Cahen, M., Gutt, S., Rawnsley, J.: Quantization on Kähler manifolds IV.Lett. Math. Phys. 34 (1995), 159–168. MR 1335583, 10.1007/BF00739094 |
Reference:
|
[17] Cariñena, J. F., Gracia–Bondìa, J. M., Vàrilly, J. C.: Relativistic quantum kinematics in the Moyal representation.J. Phys. A 23 (1990), 901–933. 10.1088/0305-4470/23/6/015 |
Reference:
|
[18] Davidson, M., Òlafsson, G., Zhang, G.: Laplace and Segal–Bargmann transforms on Hermitian symmetric spaces and orthogonal polynomials.J. Funct. Anal. 204 (2003), 157–195. Zbl 1035.32014, MR 2004748, 10.1016/S0022-1236(03)00101-0 |
Reference:
|
[19] Figueroa, H., Gracia–Bondìa, J. M., Vàrilly, J. C.: Moyal quantization with compact symmetry groups and noncommutative analysis.J. Math. Phys. 31 (1990), 2664–2671. MR 1075750, 10.1063/1.528967 |
Reference:
|
[20] Folland, B.: Harmonic Analysis in Phase Space.Princeton Univ. Press, 1989. Zbl 0682.43001, MR 0983366 |
Reference:
|
[21] Gracia–Bondìa, J. M.: Generalized Moyal quantization on homogeneous symplectic spaces.Deformation theory and quantum groups with applications to mathematical physics, vol. 134, Amherst, MA, 1990, Contemp. Math., 1992, pp. 93–114. MR 1187280 |
Reference:
|
[22] Gracia–Bondìa, J. M., Vàrilly, J. C.: The Moyal representation for spin.Ann. Physics 190 (1989), 107–148. MR 0994048, 10.1016/0003-4916(89)90262-5 |
Reference:
|
[23] Helgason, S.: Differential geometry, Lie groups and symmetric spaces.Grad. Stud. Math. 34 (2001). Zbl 0993.53002, MR 1834454 |
Reference:
|
[24] Herb, R. A., Wolf, J. A.: Wave packets for the relative discrete series I. The holomorphic case.J. Funct. Anal. 73 (1987), 1–37. Zbl 0625.22010, MR 0890655, 10.1016/0022-1236(87)90057-7 |
Reference:
|
[25] Hua, L. K.: Harmonic analysis of functions of several complex variables in the classical domains.American Mathematical Society, Providence, R.I., 1963. MR 0171936 |
Reference:
|
[26] Kirillov, A. A.: Lectures on the orbit method.Grad. Stud. Math. 64 (2004). Zbl 1229.22003, MR 2069175 |
Reference:
|
[27] Knapp, A. W.: Representation theory of semi–simple groups. An overview based on examples.Princeton Math. Ser. 36 (1986). |
Reference:
|
[28] Moore, C. C.: Compactifications of symmetric spaces II: The Cartan domains.Amer. J. Math. 86 (2) (1964), 358–378. MR 0161943, 10.2307/2373170 |
Reference:
|
[29] Neeb, K.–H.: Holomorphy and Convexity in Lie Theory.de Gruyter Exp. Math. 28 (2000), xxii+778 pp. MR 1740617 |
Reference:
|
[30] Nomura, T.: Berezin transforms and group representations.J. Lie Theory 8 (1998), 433–440. Zbl 0919.43008, MR 1650386 |
Reference:
|
[31] Oliveira, M. P. De: Some formulas for the canonical Kernel function.Geom. Dedicata 86 (2001), 227–247. Zbl 0996.32011, MR 1856428, 10.1023/A:1011915708964 |
Reference:
|
[32] Ørsted, B., Zhang, G.: Weyl quantization and tensor products of Fock and Bergman spaces.Indiana Univ. Math. J. 43 (2) (1994), 551–583. MR 1291529, 10.1512/iumj.1994.43.43023 |
Reference:
|
[33] Peetre, J., Zhang, G.: A weighted Plancherel formula III. The case of a hyperbolic matrix ball.Collect. Math. 43 (1992), 273–301. MR 1252736 |
Reference:
|
[34] Satake, I.: Algebraic structures of symmetric domains.Iwanami Sho–ten, Tokyo and Princeton Univ. Press, 1971. MR 0591460 |
Reference:
|
[35] Stratonovich, R. L.: On distributions in representation space.Soviet Physics JETP 4 (1957), 891–898. MR 0088173 |
Reference:
|
[36] Unterberger, A., Upmeier, H.: Berezin transform and invariant differential operators.Comm. Math. Phys. 164 (3) (1994), 563–597. Zbl 0843.32019, MR 1291245, 10.1007/BF02101491 |
Reference:
|
[37] Varadarajan, V. S.: Lie groups, Lie algebras and their representations.Grad. Texts in Math. 102 (1984), xiii+430 pp. Zbl 0955.22500, MR 0746308 |
Reference:
|
[38] Wildberger, N. J.: On the Fourier transform of a compact semisimple Lie group.J. Austral. Math. Soc. Ser. A 56 (1994), 64–116. Zbl 0842.22015, MR 1250994, 10.1017/S1446788700034741 |
Reference:
|
[39] Zhang, G.: Berezin transform on compact Hermitian symmetric spaces.Manuscripta Math. 97 (1998), 371–388. Zbl 0920.22008, MR 1654800, 10.1007/s002290050109 |
. |