Previous |  Up |  Next

Article

Title: An asymptotic formula for solutions of nonoscillatory half-linear differential equations (English)
Author: Došlý, Ondřej
Author: Řezníčková, Jana
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 47
Issue: 1
Year: 2011
Pages: 69-75
Summary lang: English
.
Category: math
.
Summary: We establish a Hartman type asymptotic formula for nonoscillatory solutions of the half-linear second order differential equation \[ \left(r(t)\Phi (y^{\prime })\right)^{\prime }+c(t)\Phi (y)=0\,,\quad \Phi (y):=|y|^{p-2}y\,,\ p>1\,. \] (English)
Keyword: half-linear differential equation
Keyword: asymptotic formula
Keyword: principal solution
MSC: 34C10
idZBL: Zbl 1240.34176
idMR: MR2813547
.
Date available: 2011-05-23T12:20:09Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/141510
.
Reference: [1] Agarwal, R. P., Grace, S. R., O’Regan, D.: Oscillation Theory of Second Order Linear, Half-Linear, Superlinear and Sublinear Dynamic Equations.Kluwer Academic Publishers, Dordrecht–Boston–London, 2002. MR 2091751
Reference: [2] Cecchi, M., Došlá, Z., Marini, M.: Half-linear equations and characteristic properties of the principal solution.J. Differential Equations 18 (2005), 1243–1256. Zbl 1069.34048, MR 2174819
Reference: [3] Chernyavskaya, N. A., Shuster, L.: Conditions for solvability of the Hartman-Wintner problem in terms of coefficients.Proc. Edinburgh Math. Soc. (2) 46 (2003), 687–702. Zbl 1045.34028, MR 2013962
Reference: [4] Došlá, Z., Došlý, O.: Principal and nonprincipal solutions in oscillation theory of half-linear differential equations.Electron. J. Qual. Theory Differ. Equ. 2008 (10) (2008), 1–14.
Reference: [5] Došlý, O.: Half-Linear Differential Equations.Handbook of Differential Equations: Ordinary Differential Equations (Cañada, A., Drábek, P., Fonda, A., eds.), vol. I, Elsevier, Amsterdam, 2004, pp. 161–357. Zbl 1090.34027, MR 2166491
Reference: [6] Došlý, O., Řehák, P.: Half-Linear Differential Equations.North Holland Mathematics Studies 202, Elsevier, Amsterdam, 2005. Zbl 1090.34001, MR 2158903
Reference: [7] Došlý, O., Ünal, M.: Conditionally oscillatory half-linear differential equations.Acta Math. Hungar. 120 (2008), 147–163. Zbl 1199.34169, MR 2431365, 10.1007/s10474-007-7120-4
Reference: [8] Došlý, O., Ünal, M.: Nonprincipal solutions of half-linear second order differential equations.Nonlinear Anal. 71 (2009), 4026–4033. Zbl 1173.34320, MR 2536309, 10.1016/j.na.2009.02.085
Reference: [9] Elbert, Á., Kusano, T.: Principal solutions of nonoscillatory half-linear differential equations.Adv. Math. Sci. Appl. 18 (1998), 745–759.
Reference: [10] Hartman, P.: Ordinary Differential Equations.SIAM, Philadelphia, 1982. Zbl 0476.34002, MR 1929104
Reference: [11] Jaroš, J., Kusano, T., Tanigawa, T.: Nonoscillation theory for second order half-linear differential equations in the framework of regular variation.Results Math. 43 (2003), 129–149. Zbl 1047.34034, MR 1962855, 10.1007/BF03322729
Reference: [12] Jaroš, J., Kusano, T., Tanigawa, T.: Nonoscillatory half-linear differential equations and generalized Karamata functions.Nonlinear Anal. 64 (2006), 762–787. Zbl 1103.34017, MR 2197094, 10.1016/j.na.2005.05.045
Reference: [13] Mirzov, J. D.: Principal and nonprincipal solutions of a nonoscillatory system.Tbiliss. Gos. Univ. Inst. Prikl. Mat. Trudy 31 (1988), 100–117. MR 1001343
Reference: [14] Pátíková, Z.: Asymptotic formulas for non-oscillatory solutions of perturbed half-linear Euler equation.Nonlinear Anal. 69 (2008), 3281–3290. Zbl 1158.34027, MR 2450537, 10.1016/j.na.2007.09.017
Reference: [15] Trench, W. F.: Linear perturbations of nonoscillatory second order differential equations.Proc. Amer. Math. Soc. 97 (1986), 423–428. MR 0840623, 10.1090/S0002-9939-1986-0840623-1
Reference: [16] Trench, W. F.: Linear perturbations of nonoscillatory second order differential equations II.Proc. Amer. Math. Soc. 131 (2003), 1415–1422. MR 1949871, 10.1090/S0002-9939-02-06682-0
.

Files

Files Size Format View
ArchMathRetro_047-2011-1_6.pdf 436.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo