Previous |  Up |  Next

Article

Title: Transferral of entailment in duality theory: dualisability (English)
Author: Gouveia, Maria Joao
Author: Haviar, Miroslav
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 61
Issue: 1
Year: 2011
Pages: 41-63
Summary lang: English
.
Category: math
.
Summary: A number of new results that say how to transfer the entailment relation between two different finite generators of a quasi-variety of algebras is presented. As their consequence, a well-known result saying that dualisability of a quasi-variety is independent of the generating algebra is derived. The transferral of endodualisability is also considered and the results are illustrated by examples. (English)
Keyword: natural duality
Keyword: dualisability
Keyword: endodualisability
Keyword: entailment
Keyword: retraction
MSC: 08A35
MSC: 08C15
MSC: 08C20
idZBL: Zbl 1224.08008
idMR: MR2782758
DOI: 10.1007/s10587-011-0016-z
.
Date available: 2011-05-23T12:30:02Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/141517
.
Related article: http://dml.cz/handle/10338.dmlcz/141543
.
Reference: [1] Clark, D. M., Davey, B. A.: Natural Dualities for the Working Algebraist.Cambridge University Press, Cambridge (1998). Zbl 0910.08001, MR 1663208
Reference: [2] Clark, D. M., Krauss, P. H.: Topological quasivarieties.Acta Sci. Math. (Szeged) 47 (1984), 3-39. MR 0755560
Reference: [3] Davey, B. A.: Dualisability in general and endodualisability in particular, Logic and Algebra (A. Ursini and P. Aglianò, eds.).Lecture Notes in Pure and Applied Mathematics, 389, Marcel Dekker, New York 437-455 (1996). MR 1404951
Reference: [4] Davey, B. A.: Personal communication..
Reference: [5] Davey, B. A., Haviar, M.: A schizophrenic operation which aids the efficient transfer of strong dualitites.Houston Math. J. 26 (2000), 215-222. MR 1814235
Reference: [6] Davey, B. A., Haviar, M.: Transferring optimal dualities: theory and practice.J. Austral. Math. Soc. 74 (2003), 393-420. Zbl 1047.08006, MR 1970056, 10.1017/S1446788700003384
Reference: [7] Davey, B. A., Haviar, M., Priestley, H. A.: The syntax and semantics of entailment in duality theory.J. Symbolic Logic 60 (1995), 1087-1114. Zbl 0845.08006, MR 1367197, 10.2307/2275875
Reference: [8] Davey, B. A., Haviar, M., Willard, R.: Structural entailment.Algebra Universalis 54 (2005), 397-416. Zbl 1090.08009, MR 2218853, 10.1007/s00012-005-1944-y
Reference: [9] Davey, B. A., Pitkethly, J. G.: Endoprimal algebras.Algebra Universalis 38 (1997), 266-288. Zbl 0934.08004, MR 1619762, 10.1007/s000120050055
Reference: [10] Davey, B. A., Werner, H.: Dualities and equivalences for varieties of algebras.Contributions to Lattice Theory (Szeged, 1980), (A. Huhn and E. T. Schmidt, eds.), Coll. Math. Soc. János Bolyai 33, North-Holland, Amsterdam (1983), 101-275. Zbl 0532.08003, MR 0724265
Reference: [11] Davey, B. A., Willard, R.: The dualisability of a quasi-variety is independent of the generating algebra.Algebra Universalis 45 (2001), 103-106. Zbl 1039.08006, MR 1809859, 10.1007/s000120050204
Reference: [12] Pitkethly, J. G., Davey, B. A.: Dualisability: Unary Algebras and Beyond.Springer (2005). Zbl 1085.08001, MR 2161626
Reference: [13] Pontryagin, L. S.: Sur les groupes abéliens continus.C.R. Acad. Sci. Paris 198 (1934), 238-240.
Reference: [14] Pontryagin, L. S.: The theory of topological commutative groups.Ann. Math. 35 (1934), 361-388. Zbl 0009.15601, MR 1503168, 10.2307/1968438
Reference: [15] Priestley, H. A.: Representation of distributive lattices by means of ordered Stone spaces.Bull. London Math. Soc. 2 (1970), 186-190. Zbl 0201.01802, MR 0265242, 10.1112/blms/2.2.186
Reference: [16] Priestley, H. A.: Ordered topological spaces and the representation of distributive lattices.Proc. London Math. Soc. 24 (1972), 507-530. Zbl 0323.06011, MR 0300949
Reference: [17] Saramago, M.: A study of natural dualities, including an analysis of the structure of failsets.Ph.D. thesis, University of Lisbon (1998).
Reference: [18] Saramago, M.: Some remarks on dualisability and endodualisability.Algebra Universalis 43 (2000), 197-212. Zbl 1011.08003, MR 1773938, 10.1007/s000120050153
Reference: [19] Saramago, M. J., Priestley, H. A.: Optimal natural dualities: the structure of failsets.Internat. J. Algebra Comput. 12 (2002), 407-436. Zbl 1027.08006, MR 1910686, 10.1142/S0218196702000791
Reference: [20] Stone, M. H.: The theory of representations for Boolean algebras.Trans. Amer. Math. Soc. 4 (1936), 37-111. Zbl 0014.34002, MR 1501865
Reference: [21] Wegener, C. B.: Natural dualities for varieties generated by lattice-structured algebras.Ph.D. thesis, University of Oxford (1999).
Reference: [22] Willard, R.: New tools for proving dualizability.In: Dualities, Interpretability and Ordered Structures (Lisbon, 1997) (J. Vaz de Carvalho and I. Ferreirim, eds.), Centro de Álgebra da Universidade de Lisboa (1999), 69-74.
Reference: [23] Zádori, L.: Natural duality via a finite set of relations.Bull. Austral. Math. Soc. 51 (1995), 469-478. MR 1331440, 10.1017/S0004972700014301
.

Files

Files Size Format View
CzechMathJ_61-2011-1_5.pdf 354.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo