Title:
|
A new characterization of $r$-stable hypersurfaces in space forms (English) |
Author:
|
de Lima, H. F. |
Author:
|
Velásquez, M. A. |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
47 |
Issue:
|
2 |
Year:
|
2011 |
Pages:
|
119-131 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper we study the $r$-stability of closed hypersurfaces with constant $r$-th mean curvature in Riemannian manifolds of constant sectional curvature. In this setting, we obtain a characterization of the $r$-stable ones through of the analysis of the first eigenvalue of an operator naturally attached to the $r$-th mean curvature. (English) |
Keyword:
|
space forms |
Keyword:
|
$r$-th mean curvatures |
Keyword:
|
$r$-stability |
MSC:
|
53B30 |
MSC:
|
53C42 |
MSC:
|
53C50 |
MSC:
|
53Z05 |
MSC:
|
83C99 |
idZBL:
|
Zbl 1249.53081 |
idMR:
|
MR2813538 |
. |
Date available:
|
2011-06-06T14:42:04Z |
Last updated:
|
2013-09-19 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/141561 |
. |
Reference:
|
[1] Alencar, H., do Carmo, M., Colares, A. G.: Stable hypersurfaces with constant scalar curvature.Math. Z. 213 (1993), 117–131. Zbl 0792.53057, MR 1217674, 10.1007/BF03025712 |
Reference:
|
[2] Barbosa, J. L. M., Colares, A. G.: Stability of hypersurfaces with constant $r$-mean curvature.Ann. Global Anal. Geom. 15 (1997), 277–297. Zbl 0891.53044, MR 1456513, 10.1023/A:1006514303828 |
Reference:
|
[3] Barbosa, J. L. M., do Carmo, M.: Stability of hypersurfaces with constant mean curvature.Math. Z. 185 (3) (1984), 339–353. Zbl 0513.53002, MR 0731682, 10.1007/BF01215045 |
Reference:
|
[4] Barbosa, J. L. M., do Carmo, M., Eschenburg, J.: Stability of hypersurfaces of constant mean curvature in Riemannian manifolds.Math. Z. 197 (1) (1988), 123–138. Zbl 0653.53045, MR 0917854, 10.1007/BF01161634 |
Reference:
|
[5] Barros, A., Sousa, P.: Compact graphs over a sphere of constant second order mean curvature.Proc. Amer. Math. Soc. 137 (2009), 3105–3114. Zbl 1189.53058, MR 2506469, 10.1090/S0002-9939-09-09862-1 |
Reference:
|
[6] Caminha, A.: On spacelike hypersurfaces of constant sectional curvature Lorentz manifolds.J. Geom. Phys. 56 (2006), 1144–1174. Zbl 1102.53044, MR 2234043, 10.1016/j.geomphys.2005.06.007 |
Reference:
|
[7] Cheng, S. Y., Yau, S. T.: Hypersurfaces with constant scalar curvature.Math. Ann. 225 (1977), 195–204. Zbl 0349.53041, MR 0431043, 10.1007/BF01425237 |
Reference:
|
[8] de Lima, H. F.: Spacelike hypersurfaces with constant higher order mean curvature in de Sitter space.J. Geom. Phys. 57 (2007), 967–975. Zbl 1111.53049, MR 2275203, 10.1016/j.geomphys.2006.07.005 |
Reference:
|
[9] He, Y., Li, H.: Stability of area-preserving variations in space forms.Ann. Global Anal. Geom. 34 (2008), 55–68. Zbl 1156.53037, MR 2415178, 10.1007/s10455-007-9095-3 |
Reference:
|
[10] Reilly, R.: Variational properties of functions of the mean curvatures for hypersurfaces in space forms.J. Differential Equations 8 (1973), 465–477. Zbl 0277.53030, MR 0341351 |
Reference:
|
[11] Rosenberg, H.: Hypersurfaces of constant curvature in space forms.Bull. Sci. Math. 117 (1993), 217–239. Zbl 0787.53046, MR 1216008 |
Reference:
|
[12] Xin, Y.: Minimal submanifolds and related topics.World Scientific Publishing co., Singapore, 2003. Zbl 1055.53047, MR 2035469 |
. |