Previous |  Up |  Next

Article

Title: Natural extension of a congruence of a lattice to its lattice of convex sublattices (English)
Author: Bhatta, S. Parameshwara
Author: Ramananda, H. S.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 47
Issue: 2
Year: 2011
Pages: 133-138
Summary lang: English
.
Category: math
.
Summary: Let $L$ be a lattice. In this paper, corresponding to a given congruence relation $\Theta $ of $L$, a congruence relation $\Psi _\Theta $ on $CS(L)$ is defined and it is proved that 1. $CS(L/\Theta )$ is isomorphic to $CS(L)/\Psi _\Theta $; 2. $L/\Theta $ and $CS(L)/\Psi _\Theta $ are in the same equational class; 3. if $\Theta $ is representable in $L$, then so is $\Psi _\Theta $ in $CS(L)$. (English)
Keyword: lattice of convex sublattices of a lattice
Keyword: congruence relation
Keyword: representable congruence relation
MSC: 06B10
MSC: 06B20
idZBL: Zbl 1249.06007
idMR: MR2813539
.
Date available: 2011-06-06T14:42:36Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/141562
.
Reference: [1] Grätzer, G.: General Lattice Theory.2nd ed., Birkhäuser Verlag, 1998. MR 1670580
Reference: [2] Grätzer, G.: The Congruence of a Finite Lattice, A Proof by Picture Aproach.Birkhäuser Boston, 2006. MR 2177459
Reference: [3] Lavanya, S., Parameshwara Bhatta, S.: A new approach to the lattice of convex sublattice of a lattice.Algebra Universalis 35 (1996), 63–71. MR 1360531, 10.1007/BF01190969
Reference: [4] Parameshwara Bhatta, S., Ramananda, H. S.: On ideals and congruence relations in trellises.Acta Math. Univ. Comenian. 2 (2010), 209–216. MR 2745169
.

Files

Files Size Format View
ArchMathRetro_047-2011-2_7.pdf 434.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo