Previous |  Up |  Next

Article

Title: Entropies of vague information sources (English)
Author: Mareš, Milan
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 47
Issue: 3
Year: 2011
Pages: 337-355
Summary lang: English
.
Category: math
.
Summary: The information-theoretical entropy is an effective measure of uncertainty connected with an information source. Its transfer from the classical probabilistic information theory models to the fuzzy set theoretical environment is desirable and significant attempts were realized in the existing literature. Nevertheless, there are some open topics for analysis in the suggested models of fuzzy entropy - the main of them regard the formal aspects of the fundamental concepts. Namely their rather additive (i. e., probability-like) than monotonous (typical for fuzzy set theoretical models) structure. The main goal of this paper is to describe briefly the existing state of art, and to suggest and analyze alternative, more fuzzy set theoretical, approaches to the fuzzy entropy developed as a significant characteristic of the information sources, in the information-theoretical sense. (English)
Keyword: information source
Keyword: message
Keyword: uncertainty
Keyword: fuzzy set
Keyword: fuzzy entropy
Keyword: fuzzy information
MSC: 03B52
MSC: 94A15
MSC: 94A17
MSC: 94D05
idZBL: Zbl 1242.94010
idMR: MR2857194
.
Date available: 2011-06-23T12:51:00Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/141589
.
Reference: [1] Benvenuti, P., Vivona, D., Divari, M.: Order relations for fuzzy sets and entropy measure.In: New Trends in Fuzzy Systems (E. Mancini, M. Squillante and A. Ventre, eds.). World Scientific 1998, pp. 224–232.
Reference: [2] Bronevich, A., Klir, G. J.: Measure of uncertainty for imprecise probabilities.An axiomatic approach. Internat. J. Approx. Reason. 51 (2010), 365–390. MR 2592693, 10.1016/j.ijar.2009.11.003
Reference: [3] Calvo, T., Mayor, G., (eds.), R. Measiar: Aggregation Operators.Physical-Verlag, Heidelberg 2002. MR 1936383
Reference: [4] Luca, A. De, Termini, S.: A definition of a non-probabilistic entropy in the setting of fuzzy set theory.Inform. and Control 20 (1972), 301–312. MR 0327383, 10.1016/S0019-9958(72)90199-4
Reference: [5] Fisher, R. A.: Statistical Methods for Research Workers.Olivier and Boyd, Edinburgh 1932.
Reference: [6] Forte, B.: Measures of Information: The General Axiomatic Theory.RAIRO Information Théory. Appl. 1999, pp. 63–90. MR 0260479
Reference: [7] Hung, W.-L., Yang, M.-S.: Fuzzy entropy on intuitionistic fuzzy sets.Internat. J. of Intelligent Systems 21 (2006), 443–451. Zbl 1091.94012, 10.1002/int.20131
Reference: [8] Fériet, J.-M. Kampé de: La théorie general de l’information et la mesure subjective de l’information.In: Lecture Notes in Math. 398. Springer-Verlag, Heidelberg 1974, pp. 1–35.
Reference: [9] Fériet, J.-M. Kampé dé, Forte, B.: Information et probabilité.C. R. Acad. Sci. Paris 265 (1967), 110–114, 142–146, 350–353.
Reference: [10] Klement, E.-P., Mesiar, R., Pap, E.: Triangular Norms.Kluwer, Dordrecht 2000. Zbl 1010.03046, MR 1790096
Reference: [11] Klir, G. J., Folger, T. A.: Fuzzy Sets.Uncertainty and Information. Prentice Hall, Englewood Cliffs 1988. Zbl 0675.94025, MR 0930102
Reference: [12] Klir, G. J., Wang, Z.: Generalized Measure Theory.Springer-Verlag, Berlin 2009. Zbl 1184.28002, MR 2453907
Reference: [13] Kolesárová, A., Vivona, D.: Entropy of T-sums and T-products of L-R fuzzy numbers.Kybernetika 37 (2001), 2, 127–145. Zbl 1265.03020, MR 1839223
Reference: [14] Mareš, M.: Computation Over Fuzzy Quantities.CRC-Pres, Boca Raton 1994. MR 1327525
Reference: [15] Mareš, M.: Weak arithmetics of fuzzy numbers.Fuzzy Sets and Systems 91 (1997), 2, 143–154. MR 1480041, 10.1016/S0165-0114(97)00136-X
Reference: [16] Mareš, M.: Information measures and uncertainty of particular symbols.Kybernetika 47 (2011), 1, 144–163. Zbl 1208.94036, MR 2807870
Reference: [17] Mareš, M., Mesiar, R.: Information in granulated data sources.In: Proc. ICSCCW 2007 (W. Pedrycz, R. Aliev, Mo. Jamshidi, and B. Turksen, eds.), b-Quadrat Verlag, Antalya 2007, pp. 185–194.
Reference: [18] Ming, Q., Li, T.-R.: Some properties and new formulae of fuzzy entropy.In: Proc. 2004 IEEE Internat. Conf. on Networking, Sensing and Control, Vol. I, pp. 401–406.
Reference: [19] Rathie, P.: Generalization of the non-additive measures of uncertainty and information and their axiomatic characterization.Kybernetika 7 (1971), 2, 125–132. MR 0299351
Reference: [20] Rathie, P.: On some new measures of uncertainty, inaccuracy and information and their characterizations.Kybernetika 7 (1971), 394–403. Zbl 0224.94035, MR 0299352
Reference: [21] Rényi, A.: On measures of entropy and information.In: Proc. 4th Berkeley Symp. on Math. Statistics and Probability, 1961, Vol. I, pp. 547–561. MR 0132570
Reference: [22] Shannon, C. E., Weawer, W.: A mathematical theory of communication.Bell. Syst. Techn. J. 27 (1948), 379–423, 623–653. MR 0026286, 10.1002/j.1538-7305.1948.tb01338.x
Reference: [23] Yao, M., Zhang, S.: Generalized fuzzy entropy and its applications.In: Proc. 4th Internat. Conf. on Signal Processing 1998, Vol. 2, pp. 1197–1200.
Reference: [24] Zadeh, L. A.: Fuzzy sets.Inform. and Control 8 (1965), 3, 338–353. Zbl 0139.24606, MR 0219427, 10.1016/S0019-9958(65)90241-X
Reference: [25] Zadeh, L. A.: From computing with numbers to computing with words.IEEE Trans. Circuits and Systems 45 (1999), 105–109. Zbl 0954.68513, MR 1683230
.

Files

Files Size Format View
Kybernetika_47-2011-3_3.pdf 330.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo