Previous |  Up |  Next

Article

Title: Fast and accurate methods of independent component analysis: A survey (English)
Author: Tichavský, Petr
Author: Koldovský, Zbyněk
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 47
Issue: 3
Year: 2011
Pages: 426-438
Summary lang: English
.
Category: math
.
Summary: This paper presents a survey of recent successful algorithms for blind separation of determined instantaneous linear mixtures of independent sources such as natural speech or biomedical signals. These algorithms rely either on non-Gaussianity, nonstationarity, spectral diversity, or on a combination of them. Performance of the algorithms will be demonstrated on separation of a linear instantaneous mixture of audio signals (music, speech) and on artifact removal in electroencephalogram (EEG). (English)
Keyword: Blind source separation
Keyword: probability distribution
Keyword: score function
Keyword: autoregressive random processes
Keyword: audio signal processing
Keyword: electroencephalogram
Keyword: artifact rejection
MSC: 92-02
MSC: 92-04
MSC: 92-08
MSC: 94A12
.
Date available: 2011-06-23T12:58:31Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/141594
.
Reference: [1] Belouchrani, A., Abed-Meraim, K., Cardoso, J.-F., Moulines, E.: A blind source separation technique using second-order statistics.IEEE Trans. Signal Processing 45 (1997), 434–444. 10.1109/78.554307
Reference: [2] Boscolo, R., Pan, H., Roychowdhury, V. P.: Independent component analysis based on nonparametric density estimation.IEEE Trans. Neural Networks 15 (2004), 55–65. 10.1109/TNN.2003.820667
Reference: [3] Cardoso, J.-F.: Blind signal separation: statistical principles.Proc. IEEE 90 (1998), 2009–2026.
Reference: [4] Cardoso, J.-F., Pham, D. T.: Separation of non stationary sources.Algorithms and performance., In: Independent Components Analysis: Principles and Practice (S. J. Roberts and R. M. Everson, eds.), Cambridge University Press 2001, pp. 158–180.
Reference: [5] Chambers, J., Cleveland, W., Kleiner, B., Tukey, P.: Graphical Methods for Data Analysis.Wadsworth, 1983. Zbl 0532.65094
Reference: [6] Cruces, S., Cichocki, A., Lathauwer, L. De: Thin QR and SVD factorizations for simultaneous blind signal extraction.In: Proc. European Signal Processing Conference (EUSIPCO), Vienna 2004, pp. 217–220.
Reference: [7] Dégerine, S., Zaïdi, A.: Separation of an instantaneous mixture of Gaussian autoregressive sources by the exact maximum likelihood approach.IEEE Trans. Signal Processing 52 (2004), 1492–1512. MR 2068987, 10.1109/TSP.2004.827195
Reference: [8] Delorme, A., Sejnowski, T., Makeig, S.: Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis. Neuroimage 34 (2007) 1443–1449. 10.1016/j.neuroimage.2006.11.004
Reference: [9] Hyvärinen, A., Oja, E.: A fast fixed-point algorithm for independent component analysis. Neural Computation 9 (1997), 1483–1492. 10.1162/neco.1997.9.7.1483
Reference: [10] Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis.John Wiley & Sons, 2001.
Reference: [11] James, C. J., Hesse, C. W.: Independent component analysis for biomedical signals.Physiol. Meas. 26 (2005), R15–R39. 10.1088/0967-3334/26/1/R02
Reference: [12] Koldovský, Z., Tichavský, P., Oja, E.: Efficient variant of algorithm FastICA for independent component analysis attaining the Cramér–Rao lower bound.IEEE Trans. Neural Networks 17 (2006), 1265–1277. 10.1109/TNN.2006.875991
Reference: [13] Koldovský, Z., Málek, J., Tichavský, P., Deville, Y., Hosseini, S.: Blind separation of piecewise stationary nonGaussian Sources.Signal Process. 89 (2009), 2570–2584.
Reference: [14] Koldovský, Z., Tichavský, P.: A comparison of independent component and independent subspace analysis algorithms.In: Proc. European Signal Processing Conference (EUSIPCO), Glasgow 2009, pp. 1447–1451.
Reference: [15] Koldovský, Z., Tichavský, P.: Time-domain blind separation of audio sources based on a complete ICA decomposition of an observation space. IEEE Trans. Audio, Speech and Language Processing 19 (2011), 406–416. 10.1109/TASL.2010.2049411
Reference: [16] Learned-Miller, E. G., III, J. W. Fisher: ICA using spacings estimates of entropy.J. Machine Learning Research 4 (2004), 1271–1295. MR 2103630
Reference: [17] Lee, Te-Won: Independent Component Analysis, Theory and Applications.Kluwer Academic Publishers, 1998. Zbl 0910.94004
Reference: [18] Pham, D. T., Garat, P.: Blind separation of mixture of independent sources through a quasi-maximum likelihood approach, IEEE Trans.Signal Process. 45 (1997), 1712–1725. 10.1109/78.599941
Reference: [19] Pham, D.-T.: Joint approximate diagonalization of positive definite Hermitian matrices.SIAM J. Matrix Anal. Appl. 22 (2001), 1136–1152. Zbl 1008.65020, MR 1824062, 10.1137/S089547980035689X
Reference: [20] Pham, D.-T.: Blind separation of instantaneous mixture of sources via the Gaussian mutual information criterion.Signal Process. 81 (2001), 855–870. Zbl 1098.94576, 10.1016/S0165-1684(00)00260-7
Reference: [21] Pham, D.-T., Cardoso, J.-F.: Blind separation of instantaneous mixtures of nonstationary sources.IEEE Trans. Signal Process. 49 (2001), 1837–1848. MR 1852133, 10.1109/78.942614
Reference: [22] Tichavský, P., Koldovský, Z., Oja, E.: Performance analysis of the FastICA algorithm and Cramér-Rao bounds for linear independent component analysis.IEEE Trans. Signal Process. 54 (2006), 1189–1203. 10.1109/TSP.2006.870561
Reference: [23] Tichavský, P., Koldovský, Z., Oja, E.: Corrections to “Performance analysis of the FastICA algorithm and Cramér–Rao Bounds for linear independent component analysis, TSP 04/06".IEEE Tran. Signal Process. 56 (2008), 1715–1716. MR 2516583, 10.1109/TSP.2007.910503
Reference: [24] Tichavský, P., Koldovský, Z., Oja, E.: Speed and accuracy enhancement of linear ICA techniques using rational nonlinear functions.Lecture Notes in Comput. Sci. 4666 (2007), 285–292. Zbl 1172.94493
Reference: [25] Tichavský, P., Koldovský, Z., Yeredor, A., Gomez-Herrero, G., Doron, E.: A hybrid technique for blind non-Gaussian and time-correlated sources using a multicomponent approach.IEEE Trans. Neural Networks 19 (2008), 421–430. 10.1109/TNN.2007.908648
Reference: [26] Tichavský, P., Yeredor, A.: Fast approximate joint diagonalization incorporating weight matrices.IEEE Trans. Signal Process. 57 (2009), 878–891. MR 3027773, 10.1109/TSP.2008.2009271
.

Files

Files Size Format View
Kybernetika_47-2011-3_8.pdf 972.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo