Previous |  Up |  Next

Article

Keywords:
nonsmooth equations; modified Levenberg-Marquardt method; global convergence; nonlinear complementarity problem; numerical results
Summary:
In this paper, we discuss the globalization of some kind of modified Levenberg-Marquardt methods for nonsmooth equations and their applications to nonlinear complementarity problems. In these modified Levenberg-Marquardt methods, only an approximate solution of a linear system at each iteration is required. Under some mild assumptions, the global convergence is shown. Finally, numerical results show that the present methods are promising.
References:
[1] Bertsekas, D. P.: Constrained Optimization and Lagrange Multiplier Methods. Academic Press New York (1982). MR 0690767 | Zbl 0572.90067
[2] Chen, X., Qi, L.: A parameterized Newton method and a quasi-Newton method for nonsmooth equations. Comput. Optim. Appl. 3 (1994), 157-179. DOI 10.1007/BF01300972 | MR 1273659 | Zbl 0821.65029
[3] Cottle, R. W., Pang, J.-S., Stone, R. E.: The Linear Complementarity Problem. Academic Press Boston (1992). MR 1150683 | Zbl 0757.90078
[4] Du, S.-Q., Gao, Y.: A modified Levenberg-Marquardt method for nonsmooth equations with finitely many maximum functions. Math. Prob. Eng. (2008). MR 2476501 | Zbl 1288.49011
[5] Fischer, A.: A special Newton-type optimization method. Optim. 24 (1992), 269-284. DOI 10.1080/02331939208843795 | MR 1247636 | Zbl 0814.65063
[6] Fischer, A., Jeyakumar, V., Luc, D. T.: Solution point characterizations and convergence analysis of a descent algorithm for nonsmooth continuous complementarity problems. J. Optimization Theory Appl. 110 (2001), 493-513. DOI 10.1023/A:1017580126509 | MR 1854013 | Zbl 1064.90048
[7] Facchinei, F., Kanzow, F.: A nonsmooth inexact Newton method for the solution of large-scale nonlinear complementarity problems. Math. Program. 76 (1997), 493-512. DOI 10.1007/BF02614395 | MR 1433968 | Zbl 0871.90096
[8] Gao, Y.: Newton methods for solving two classes of nonsmooth equations. Appl. Math. 46 (2001), 215-229. DOI 10.1023/A:1013791923957 | MR 1828306 | Zbl 1068.65063
[9] Geiger, C., Kanzow, C.: On the resolution of monotone complementarity problems. Comput. Optim. Appl. 5 (1996), 155-173. DOI 10.1007/BF00249054 | MR 1373295 | Zbl 0859.90113
[10] Jiang, H.: Unconstrained minimization approaches to nonlinear complementarity problems. J. Glob. Optim. 9 (1996), 169-181. DOI 10.1007/BF00121662 | MR 1411607 | Zbl 0868.90122
[11] Moré, J. J., Sorensen, D. C.: Computing a trust region step. SIAM J. Sci. Stat. Comput. 4 (1983), 553-572. DOI 10.1137/0904038 | MR 0723110
[12] Qi, L., Tseng, P.: On almost smooth functions and piecewise smooth functions. Nonlinear Anal. 67 (2007), 773-794. DOI 10.1016/j.na.2006.06.029 | MR 2319208 | Zbl 1125.26019
[13] Qi, L., Sun, J.: A nonsmooth version of Newton's method. Math. Program. 58 (1993), 353-367. DOI 10.1007/BF01581275 | MR 1216791 | Zbl 0780.90090
[14] Sun, D., Qi, L.: On NCP-functions. Comput. Optim. Appl. 13 (1999), 201-220. DOI 10.1023/A:1008669226453 | MR 1704120 | Zbl 1040.90544
[15] Yamashita, N., Fukushima, M.: Modified Newton methods for solving a semismooth reformulation of monotone complementarity problems. Math. Program. 76 (1997), 469-491. DOI 10.1007/BF02614394 | MR 1433967 | Zbl 0872.90102
Partner of
EuDML logo