Previous |  Up |  Next

Article

Title: The $\bar {\partial }$-Neumann operator on Lipschitz $q$-pseudoconvex domains (English)
Author: Saber, Sayed
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 61
Issue: 3
Year: 2011
Pages: 721-731
Summary lang: English
.
Category: math
.
Summary: On a bounded $q$-pseudoconvex domain $\Omega $ in $\mathbb {C}^{n}$ with a Lipschitz boundary, we prove that the $\bar {\partial }$-Neumann operator $N$ satisfies a subelliptic $(1/2)$-estimate on $\Omega $ and $N$ can be extended as a bounded operator from Sobolev $(-1/2)$-spaces to Sobolev $(1/2)$-spaces. (English)
Keyword: Sobolev estimate
Keyword: $\bar \partial $ and $\bar \partial $-Neumann operator
Keyword: $q$-pseudoconvex domains
Keyword: Lipschitz domains
MSC: 32F10
MSC: 32W05
idZBL: Zbl 1249.32016
idMR: MR2853086
DOI: 10.1007/s10587-011-0021-2
.
Date available: 2011-09-22T14:41:43Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/141633
.
Reference: [1] Abdelkader, O., Saber, S.: Estimates for the $\bar{\partial}$-Neumann operator on strictly pseudo-convex domain with Lipschitz boundary.J. Inequal. Pure Appl. Math. 5 10 (2004). MR 2084879
Reference: [2] Abdelkader, O., Saber, S.: The $\bar{\partial}$-Neumann operator on a strictly pseudo-convex domain with piecewise smooth boundary.Math. Slovaca 55 (2005), 317-328. MR 2181009
Reference: [3] Ahn, H., Dieu, N. Q.: The Donnelly-Fefferman Theorem on $q$-pseudoconvex domains.Osaka J. Math. 46 (2009), 599-610. Zbl 1214.32015, MR 2583320
Reference: [4] Boas, H. P., Straube, E. J.: Global regularity of the $\bar{\partial}$-Neumann problem: A Survey of the $L^{2}$-Sobolev Theory, Several Complex Variables.MSRI Publications 37 (1999), 79-111. MR 1748601
Reference: [5] Boas, H. P., Straube, E. J.: Sobolev estimates for the $\bar{\partial}$-Neumann operator on domains in $\Bbb{C}^{n}$ admitting a defining function that is plurisubharmonic on the boundary.Math. Z. 206 (1991), 81-88. MR 1086815, 10.1007/BF02571327
Reference: [6] Bonami, A., Charpentier, P.: Boundary values for the canonical solution to $\bar{\partial}$-equation and $W^{1/2}$ estimates.Preprint, Bordeaux (1990). MR 1055987
Reference: [7] Catlin, D.: Subelliptic estimates for the $\bar{\partial}$-Neumann problem on pseudoconvex domains.Annals Math. 126 (1987), 131-191. Zbl 0627.32013, MR 0898054, 10.2307/1971347
Reference: [8] Chen, S. C., Shaw, M. C.: Partial differential equations in several complex variables.AMS/IP Studies in Advanced Mathematics, vol. 19, American Mathematical Society, Providence, RI (2001). Zbl 0963.32001, MR 1800297
Reference: [9] Ehsani, D.: Solution of the d-bar-Neumann problem on a bi-disc.Math. Res. Letters 10 (2003), 523-533. MR 1995791, 10.4310/MRL.2003.v10.n4.a11
Reference: [10] Ehsani, D.: Solution of the d-bar-Neumann problem on a non-smooth domain.Indiana Univ. Math. J. 52 (2003), 629-666. MR 1986891, 10.1512/iumj.2003.52.2261
Reference: [11] Engliš, M.: Pseudolocal estimates for $\bar\partial$ on general pseudoconvex domains.Indiana Univ. Math. J. 50 (2001), 1593-1607. MR 1889072, 10.1512/iumj.2001.50.2085
Reference: [12] Evans, L. E., Gariepy, R. F.: Measure theory and fine properties of functions.Stud. Adv. Math., CRC, Boca Raton (1992). Zbl 0804.28001, MR 1158660
Reference: [13] Folland, G. B., Kohn, J. J.: The Neumann problem for the Cauchy-Riemann complex.Ann. Math. Studies {\it 75}, Princeton University Press, New York, 1972. Zbl 0247.35093, MR 0461588
Reference: [14] Grisvard, P.: Elliptic problems in nonsmooth domains.Monogr. Stud. Math. Pitman, Boston 24 (1985). Zbl 0695.35060, MR 0775683
Reference: [15] Henkin, G., Iordan, A., Kohn, J. J.: Estimations sous-elliptiques pour le problème $\bar{\partial}$-Neumann dans un domaine strictement pseudoconvexe à frontière lisse par morceaux.C. R. Acad. Sci. Paris Sér. I Math. 323 (1996), 17-22. MR 1401622
Reference: [16] Ho, L.-H.: $\bar\partial$-problem on weakly $q$-convex domains.Math. Ann. 290 (1991), 3-18. Zbl 0714.32006, MR 1107660, 10.1007/BF01459235
Reference: [17] Hörmander, L.: $L^{2}$-estimates and existence theorems for the $\bar{\partial}$-operator.Acta Math. 113 (1965), 89-152. MR 0179443, 10.1007/BF02391775
Reference: [18] Kohn, J. J.: Global regularity for $\bar{\partial}$ on weakly pseudo-convex manifolds.Trans. Amer. Math. Soc. 181 (1973), 273-292. Zbl 0276.35071, MR 0344703
Reference: [19] Kohn, J. J.: Harmonic integrals on strictly pseudoconvex manifolds I.Ann. Math. 78 (1963), 112-148. MR 0153030, 10.2307/1970506
Reference: [20] Kohn, J. J.: Harmonic integrals on strictly pseudoconvex manifolds II.Ann. Math. 79 (1964), 450-472. MR 0208200, 10.2307/1970404
Reference: [21] Michel, J., Shaw, M.: Subelliptic estimates for the $\bar {\partial}$-Neumann operator on piecewise smooth strictly pseudoconvex domains.Duke Math. J. 93 (1998), 115-128. MR 1620087, 10.1215/S0012-7094-98-09304-8
Reference: [22] Michel, J., Shaw, M.: The $\bar {\partial}$-Neumann operator on Lipschitz pseudoconvex domains with plurisubharmonic defining functions.Duke Math. J. 108 (2001), 421-447. MR 1838658, 10.1215/S0012-7094-01-10832-6
Reference: [23] Stein, E. M.: Singular integrals and differentiability properties of functions.Princeton, Princeton Univ. Press Vol. 30 (1970). Zbl 0207.13501, MR 0290095
Reference: [24] Straube, E.: Plurisubharmonic functions and subellipticity of the $\bar{\partial}$-Neumann problem on nonsmooth domains.Math. Res. Lett. 4 (1997), 459-467. MR 1470417, 10.4310/MRL.1997.v4.n4.a2
Reference: [25] Zampieri, G.: $q$-pseudoconvexity and regularity at the boundary for solutions of the $\bar\partial$-problem.Compositio Math. 121 (2000), 155-162. MR 1757879, 10.1023/A:1001811318865
.

Files

Files Size Format View
CzechMathJ_61-2011-3_10.pdf 273.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo