Previous |  Up |  Next

Article

Title: Some remarks on the Akivis algebras and the Pre-Lie algebras (English)
Author: Chen, Yuqun
Author: Li, Yu
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 61
Issue: 3
Year: 2011
Pages: 707-720
Summary lang: English
.
Category: math
.
Summary: In this paper, by using the Composition-Diamond lemma for non-associative algebras invented by A. I. Shirshov in 1962, we give Gröbner-Shirshov bases for free Pre-Lie algebras and the universal enveloping non-associative algebra of an Akivis algebra, respectively. As applications, we show I. P. Shestakov's result that any Akivis algebra is linear and D. Segal's result that the set of all good words in $X^{**}$ forms a linear basis of the free Pre-Lie algebra ${\rm PLie}(X)$ generated by the set $X$. For completeness, we give the details of the proof of Shirshov's Composition-Diamond lemma for non-associative algebras. (English)
Keyword: non-associative algebra
Keyword: Akivis algebra
Keyword: universal enveloping algebra
Keyword: Pre-Lie algebra
Keyword: Gröbner-Shirshov basis
MSC: 13P10
MSC: 16S15
MSC: 17A01
MSC: 17B60
idZBL: Zbl 1249.17002
idMR: MR2853085
DOI: 10.1007/s10587-011-0041-y
.
Date available: 2011-09-22T14:40:14Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/141632
.
Reference: [1] Akivis, M. A.: The local algebras of a multidimensional three-web.Sibirsk. Mat. Z. 17 (1976), 5-11 Russian English translation: Siberian Math. J. 17 (1976), 3-8. MR 0405261
Reference: [2] Bergman, G. M.: The diamond lemma for ring theory.Adv. Math. 29 (1978), 178-218. MR 0506890, 10.1016/0001-8708(78)90010-5
Reference: [3] Bokut, L. A.: Embeddings into simple associative algebras.Algebra Log. 15 (1976), 73-90. MR 0506423, 10.1007/BF01877233
Reference: [4] Bokut, L. A., Fong, Y., Ke, W.-F., Kolesnikov, P. S.: Gröbner and Gröbner-Shirshov bases in algebra and conformal algebras.Fundam. Appl. Prikl. Mat. 6 (2000), 669-706. MR 1801321
Reference: [5] Bokut, L. A., Kolesnikov, P. S.: Gröbner-Shirshov bases: from their inception to the present time.J. Math. Sci. 116 (2003), 2894-2916. MR 1811792, 10.1023/A:1023490323855
Reference: [6] Bokut, L. A., Kolesnikov, P. S.: Gröbner-Shirshov bases, conformal algebras and pseudo-algebras.J. Math. Sci. 131 (2005), 5962-6003. MR 2153696, 10.1007/s10958-005-0454-y
Reference: [7] Buchberger, B.: An algorithmical criteria for the solvability of algebraic systems of equations.Aequationes Math. 4 (1970), 374-383 German.
Reference: [8] Eisenbud, D.: Commutative Algebra. With a View Toward Algebraic Geometry. Graduate Texts in Mathematics, Vol. 150.Springer Berlin (1995). MR 1322960, 10.1007/978-1-4612-5350-1
Reference: [9] Hironaka, H.: Resolution of singularities of an algebraic variety over a feild of characteristic zero. I, II.Ann. Math. 79 (1964), 109-203, 205-326. MR 0199184, 10.2307/1970486
Reference: [10] Knuth, D. E., Bendix, P. B.: Simple word problems in universal algebras.Comput. Probl. Abstract Algebra. Proc. Conf. Oxford 1967 (1970), 263-297. Zbl 0188.04902, MR 0255472
Reference: [11] Kurosh, A. G.: Nonassociative free algebras and free products of algebras.Mat. Sb. N. Ser. 20 (1947), 239-262 Russian. Zbl 0041.16803, MR 0020986
Reference: [12] Reutenauer, C.: Free Lie Algebras.Clarendon Press Oxford (1993). Zbl 0798.17001, MR 1231799
Reference: [13] Segal, D.: Free left-symmetric algebras and an analogue of the Poincaré-Birkhoff-Witt Theorem.J. Algebra 164 (1994), 750-772. Zbl 0831.17001, MR 1272113, 10.1006/jabr.1994.1088
Reference: [14] Shestakov, I. P.: Every Akivis algebra is linear.Geom. Dedicata 77 (1999), 215-223. Zbl 1043.17002, MR 1713296, 10.1023/A:1005157524168
Reference: [15] Shestakov, I. P., Umirbaev, U.: Free Akivis algebras, primitive elements and hyperalgebras.J. Algebra 250 (2002), 533-548. Zbl 0993.17002, MR 1899864, 10.1006/jabr.2001.9123
Reference: [16] Shirshov, A. I.: Subalgebras of free Lie algebras.Mat. Sb., N. Ser. 33 (1953), 441-452 Russian. MR 0059892
Reference: [17] Shirshov, A. I.: Subalgebras of free commutative and free anti-commutative algebras.Mat. Sbornik 34 (1954), 81-88 Russian. MR 0062112
Reference: [18] Shirshov, A. I.: Certain algorithmic problems for $\epsilon$-algebras.Sib. Mat. Zh. 3 (1962), 132-137.
Reference: [19] Shirshov, A. I.: Certain algorithmic problems for Lie algebras.Sib. Mat. Zh. 3 (1962), 292-296 Russian.
Reference: [20] Bokut, L. A., Latyshev, V., Shestakov, I., Zelmanov, E.: Selected Works of A. I. Shirshov Series. Contemporary Mathematicians.Basel, Boston, Berlin (2009). MR 2547481
Reference: [21] Witt, E.: Subrings of free Lie rings.Math. Z. 64 (1956), 195-216 German.
Reference: [22] Zhukov, A. I.: Reduced systems of defining relations in nonassociative algebras.Mat. Sb., N. Ser. 27 (1950), 267-280 Russian. Zbl 0038.17001, MR 0037831
.

Files

Files Size Format View
CzechMathJ_61-2011-3_9.pdf 263.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo