Previous |  Up |  Next

Article

Title: Stochastic bottleneck transportation problem with flexible supply and demand quantity (English)
Author: Ge, Yue
Author: Ishii, Hiroaki
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 47
Issue: 4
Year: 2011
Pages: 560-571
Summary lang: English
.
Category: math
.
Summary: We consider the following bottleneck transportation problem with both random and fuzzy factors. There exist $m$ supply points with flexible supply quantity and $n$ demand points with flexible demand quantity. For each supply-demand point pair, the transportation time is an independent positive random variable according to a normal distribution. Satisfaction degrees about the supply and demand quantity are attached to each supply and each demand point, respectively. They are denoted by membership functions of corresponding fuzzy sets. Under the above setting, we seek a transportation pattern minimizing the transportation time target subject to a chance constraint and maximizing the minimal satisfaction degree among all supply and demand points. Since usually there exists no transportation pattern optimizing two objectives simultaneously, we propose an algorithm to find some non-dominated transportation patterns after defining non-domination. We then give the validity and time complexity of the algorithm. Finally, a numerical example is presented to demonstrate how our algorithm runs. (English)
Keyword: bottleneck transportation
Keyword: random transportation time
Keyword: flexible supply and demand quantity
Keyword: non-dominated transportation pattern
MSC: 68Q25
MSC: 90C15
MSC: 90C35
MSC: 90C70
idZBL: Zbl 1228.90136
idMR: MR2884861
.
Date available: 2011-09-23T11:23:26Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/141659
.
Reference: [1] Ahuja, R. K., Orlin, J. B., Tarjan, R. E.: Improved time bounds for the maximum flow problem.SIAM J. Comput. 18 (1989), 939–954. Zbl 0675.90029, MR 1015267, 10.1137/0218065
Reference: [2] Charnes, A., Cooper, W. W.: The stepping stone method of explaining linear programming calculations in transportation problems.Management Sci. 1 (1954), 49–69. Zbl 0995.90512, MR 0074103, 10.1287/mnsc.1.1.49
Reference: [3] Chen, M. H., Ishii, H., Wu, C. X.: Transportation problems on a fuzzy network.Internat. J. Innovative Computing, Information and Control 4 (2008), 1105–1109.
Reference: [4] Dantzig, G. B.: Application of the simplex method to a transportation problem.In: Activity Analysis of Production and Allocation, Chapter 23, Cowles Commission Monograph 13. Wiley, New York 1951. Zbl 0045.09901, MR 0056262
Reference: [5] Ford, L. R., Jr., Fulkerson, D. R.: Solving the transportation problem.Management Sci. 3 (1956), 24–32. MR 0097878, 10.1287/mnsc.3.1.24
Reference: [6] Garfinkel, R. S., Rao, M. R.: The bottleneck transportation problem.Naval Res. Logist. Quart. 18 (1971), 465–472. MR 0337282, 10.1002/nav.3800180404
Reference: [7] Geetha, S., Nair, K. P. K.: A stochastic bottleneck transportation problem.J. Oper. Res. Soc. 45 (1994), 583–588. Zbl 0807.90090
Reference: [8] Hammer, P. L.: Time minimizing transportation problem.Naval Res. Logist. Quart. 16 (1969), 345–357. MR 0260422
Reference: [9] Hitchcock, F. L.: The distribution of a product from several sources to numerous localities.J. Math. Phys. 20 (1941), 224–230. Zbl 0026.33904, MR 0004469
Reference: [10] Ishii, H.: Competitive transportation problem.Central Europ. J. Oper. Res. 12 (2004), 71–78. MR 2060702
Reference: [11] Ishii, H., Ge, Y.: Fuzzy transportation problem with random transportation costs.Scient. Math. Japon. 70 (2009), 151–157. Zbl 1188.90266, MR 2555732
Reference: [12] Ishii, H., Tada, M., Nishida, T.: Fuzzy transportation problem.J. Japan Soc. Fuzzy Theory and System 2 (1990), 79–84. Zbl 0807.90129
Reference: [13] Lin, F. T., Tsai, T. R.: A two-stage genetic algorithm for solving the transportation problem with fuzzy demands and fuzzy supplies.Internat. J. Innov. Comput. Inform. Control 5 (2009), 4775–4785.
Reference: [14] Munkres, J.: Algorithms for the assignment and transportation problems.J. Soc. Industr. Appl. Math. 5 (1957), 32–38. Zbl 0131.36604, MR 0093429, 10.1137/0105003
Reference: [15] Srinivasan, V., Thompson, G. L.: An operator theory of parametric programming for the transportation-I.Naval Res. Logist. Quart. 19 (1972), 205–226. MR 0321525, 10.1002/nav.3800190202
Reference: [16] Szwarc, W.: Some remarks on the time transportation problem.Naval Res. Logist. Quart. 18 (1971), 473–485. MR 0337298, 10.1002/nav.3800180405
Reference: [17] Tada, M., Ishii, H.: An integer fuzzy transportation Problem.Comput. Math. Appl. 31 (1996), 71–87. Zbl 0853.90123, MR 1386264, 10.1016/0898-1221(96)00044-2
Reference: [18] Tada, M., Ishii, H., Nishida, T.: Fuzzy transportation problem with integral flow.Math. Japon. 35 (1990), 335–341. Zbl 0712.90047, MR 1049099
.

Files

Files Size Format View
Kybernetika_47-2011-4_5.pdf 279.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo