Title:
|
Observables on $\sigma $-MV algebras and $\sigma $-lattice effect algebras (English) |
Author:
|
Jenčová, Anna |
Author:
|
Pulmannová, Silvia |
Author:
|
Vinceková, Elena |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 |
Volume:
|
47 |
Issue:
|
4 |
Year:
|
2011 |
Pages:
|
541-559 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Effect algebras were introduced as abstract models of the set of quantum effects which represent sharp and unsharp properties of physical systems and play a basic role in the foundations of quantum mechanics. In the present paper, observables on lattice ordered $\sigma$-effect algebras and their “smearings” with respect to (weak) Markov kernels are studied. It is shown that the range of any observable is contained in a block, which is a $\sigma$-MV algebra, and every observable is defined by a smearing of a sharp observable, which is obtained from generalized Loomis-Sikorski theorem for $\sigma$-MV algebras. Generalized observables with the range in the set of sharp real observables are studied and it is shown that they contain all smearings of observables. (English) |
Keyword:
|
lattice effect algebra |
Keyword:
|
MV algebra |
Keyword:
|
observable |
Keyword:
|
state |
Keyword:
|
Markov kernel |
Keyword:
|
weak Markov kernel |
Keyword:
|
smearing |
Keyword:
|
generalized observable |
MSC:
|
03G12 |
MSC:
|
81P10 |
MSC:
|
81P15 |
idZBL:
|
Zbl 1237.81008 |
idMR:
|
MR2884860 |
. |
Date available:
|
2011-09-23T11:22:13Z |
Last updated:
|
2013-09-22 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/141658 |
. |
Reference:
|
[1] Busch, P., Lahti, P. J., Mittelstaedt, P.: The Quantum Theory of Measurement.Lecture Notes in Phys., Springer-Verlag, Berlin 1991. MR 1176754 |
Reference:
|
[2] Butnariu, D., Klement, E.: Triangular-norm-based measures and their Markov kernel representation.J. Math. Anal. Appl. 162 (1991), 111–143. Zbl 0751.60003, MR 1135265, 10.1016/0022-247X(91)90181-X |
Reference:
|
[3] Barbieri, G., Weber, H.: Measures on clans and on MV-algebras.In: Handbook of Measure Theory, vol. II. (E. Pap, ed.), Elsevier, Amsterdam 2002, pp. 911–945. Zbl 1019.28009, MR 1954632 |
Reference:
|
[4] Cignoli, R., D’Ottaviano, I. M. L., Mundici, D.: Algebraic Foundations of Many-Valued Reasoning.Kluwer, Dordrecht 2000. MR 1786097 |
Reference:
|
[5] Chang, C.: Algebraic analysis of many-valued logic.Trans. Amer. Math. Soc. 89 (1959), 74–80. MR 0094302 |
Reference:
|
[6] Chovanec, F., Kôpka, F.: D-lattices.Internat. J. Thoer. Phys. 34 (1995), 1297–1302. MR 1353674, 10.1007/BF00676241 |
Reference:
|
[7] Dvurečenskij, A.: Loomis–Sikorski theorem for $\sigma $-complete MV-algebras and $\ell $-groups.J. Austral. Math. Soc. Ser A 68 (2000), 261–277. MR 1738040, 10.1017/S1446788700001993 |
Reference:
|
[8] Dvurečenskij, A., Pulmannová, S.: New Trends in Quantum Structures.Kluwer Academic Publishers, Dordrecht 2000. MR 1861369 |
Reference:
|
[9] Foulis, D. J., Bennett, M. K.: Effect algebras and unsharp quantum logics.Found. Phys. 24 (1994), 1325–1346. MR 1304942 |
Reference:
|
[10] Foulis, D. J.: Spectral resolutions in a Rickart comgroup.Rep. Math. Phys. 54 (2004), 229–250. MR 2107868, 10.1016/S0034-4877(04)80016-8 |
Reference:
|
[11] Giuntini, R., Greuling, R.: Toward a formal language for unsharp properties.Found. Phys. 19 (1989), 931–945. MR 1013913, 10.1007/BF01889307 |
Reference:
|
[12] Goodearl, K. R.: Partially ordered abelian groups with interpolation.Mat. Surveys Monographs 20, AMS Providence, 1986. Zbl 0589.06008, MR 0845783 |
Reference:
|
[13] Holevo, A. S.: An analogue of the theory of statistical decisions in noncommutative probability theory.Trans. Mosc. Math. Soc. 26 (1972), 133–147. MR 0365809 |
Reference:
|
[14] Jenča, G., Riečanová, Z.: On sharp elements in lattice ordered effect algebras.Busefal 80 (1999), 24–29. |
Reference:
|
[15] Jenčová, A., Pulmannová, S., Vinceková, E.: Sharp and fuzzy observables on effect algebras.Internat. J. Theor. Phys. 47 (2008), 1, 125–148. Zbl 1139.81006, 10.1007/s10773-007-9396-0 |
Reference:
|
[16] Jenčová, A., Pulmannová, S.: How sharp are PV measures? Rep.Math. Phys. 59 (2007), 257–266. MR 2340197, 10.1016/S0034-4877(07)80038-3 |
Reference:
|
[17] Jenčová, A., Pulmannová, S.: Characterizations of commutative POV measures.Found. Phys. 39 (2009), 613–124. Zbl 1204.81068, MR 2548410, 10.1007/s10701-009-9273-1 |
Reference:
|
[18] Kôpka, F., Chovanec, F.: D-posets.Math. Slovaca 44 (1994), 21–34. MR 1290269 |
Reference:
|
[19] Mundici, D.: Interpretation of AF C*-algebras in Łukasiewicz sentential calculus.J. Funct. Anal. 65 (1986), 15–63. MR 0819173, 10.1016/0022-1236(86)90015-7 |
Reference:
|
[20] Mundici, D.: Tensor products and the Loomis–Sikorski theorem for MV-algebras.Advan. Appl. Math. 22 (1999), 227–248. Zbl 0926.06004, MR 1659410, 10.1006/aama.1998.0631 |
Reference:
|
[21] Mundici, D.: Averaging the truth-value in in Łukasziewicz logic.Studia Logica 55 (1995), 113–127. MR 1348840, 10.1007/BF01053035 |
Reference:
|
[22] Pták, P., Pulmannová, S.: Orthomodular Structures as Quantum Logics.Kluwer, Dordrecht 1991. MR 1176314 |
Reference:
|
[23] Pulmannová, S.: A spectral theorem for sigma-MV algebas.Kybernetika 41 (2005), 361–374. |
Reference:
|
[24] Pulmannová, S.: Spectral resolutions in Dedekind $\sigma $-complete $\ell $-groups.J. Math. Anal. Appl. 309 (2005), 322–335. Zbl 1072.06014, MR 2154046, 10.1016/j.jmaa.2005.01.044 |
Reference:
|
[25] Pulmannová, S.: Spectral resolutions for $\sigma $-complete lattice effect algebras.Math. Slovaca 56 (2006), 555–571. Zbl 1141.81007, MR 2293587 |
Reference:
|
[26] Pulmannová, S.: Sharp and unsharp observables on $\sigma $-MV algebras—A comparison with the Hilbert space approach.Fuzzy Sets and Systems 159 (2008), 3065–3077. Zbl 1174.06013, MR 2457564 |
Reference:
|
[27] Riečan, B., Neubrunn, T.: Integral, Measure and Ordering.Kluwer, Dordrecht – Ister Science, Bratislava 1997. MR 1489521 |
Reference:
|
[28] Riečanová, Z.: Generalization of blocks for D-lattices and lattice-ordered effect algebras.Internat. J. Theor. Phys. 39 (2000), 231–237. MR 1762594, 10.1023/A:1003619806024 |
Reference:
|
[29] Štepán, J.: Probability Theory.(Teorie pravděpodobnosti. (In Czech.) Academia, Praha 1987. |
Reference:
|
[30] Strasser, H.: Mathematical Theory of Statistics.W. De Gruyter, Berlin – New York 1985. Zbl 0594.62017, MR 0812467 |
Reference:
|
[31] Varadarajan, V. S.: Geometry of Quantum Theory.Springer-Verlag, Berlin 1985. Zbl 0581.46061, MR 0805158 |
. |