Previous |  Up |  Next

Article

Title: On D’Alembert’s Principle (English)
Author: Bates, Larry M.
Author: Nester, James M.
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388
Volume: 19
Issue: 1
Year: 2011
Pages: 57-72
Summary lang: English
.
Category: math
.
Summary: A formulation of the D’Alembert principle as the orthogonal projection of the acceleration onto an affine plane determined by nonlinear nonholonomic constraints is given. Consequences of this formulation for the equations of motion are discussed in the context of several examples, together with the attendant singular reduction theory. (English)
Keyword: nonholonomic constraints
Keyword: d’Alembert’s principle
MSC: 37J60
MSC: 70F25
MSC: 70H33
MSC: 70H45
idZBL: Zbl 06010915
idMR: MR2855391
.
Date available: 2011-10-31T08:14:29Z
Last updated: 2013-10-22
Stable URL: http://hdl.handle.net/10338.dmlcz/141679
.
Reference: [1] Bates, L.: Examples of singular nonholonomic reduction.Reports on Mathematical Physics 42 1998 231–247 Zbl 0931.37022, MR 1656283, 10.1016/S0034-4877(98)80012-8
Reference: [2] Bates, L., Śniatycki, J.: Nonholonomic reduction.Reports on Mathematical Physics 32 1993 99–115 MR 1247165, 10.1016/0034-4877(93)90073-N
Reference: [3] Cantrijn, F., de León, M., Marrero, J., de Diego, D.: Reduction of constrained systems with symmetries.Journal of mathematical physics 40 1999 795–820 MR 1674283, 10.1063/1.532686
Reference: [4] Cushman, R., Kempainen, D., Śniatycki, J.: A classical particle with spin realized by reduction of a nonlinear nonholonomic constraint.Reports on mathematical physics 41 (1) 1998 133–142 MR 1617882
Reference: [5] de León, M., de Diego, D.: Mechanical systems with nonlinear constraints.International journal of theoretical physics 36 (4) 1997 979–995 MR 1445410, 10.1007/BF02435796
Reference: [6] Giaquinta, M., Hildebrandt, S.: Calculus of Variations I.Number 310 in Grundlehren der mathematischen Wissenschaften. Springer-Verlag 1996 MR 1368401
Reference: [7] Goldstein, H., Poole, C., Safko, J.: Classical mechanics.Addison-Wesley, third edition 2002 MR 0043608
Reference: [8] Grácia, X., Martin, R.: Regularity and symmetries of nonholonomic systems.J. Phys. A: Math. Gen. 38 2005 1071–1087 Zbl 1062.70030, MR 2120932, 10.1088/0305-4470/38/5/009
Reference: [9] Koon, W., Marsden, J.: Poisson reduction for nonholonomic mechanical systems with symmetry.Reports on mathematical physics 42 1998 101–134 Zbl 1120.37314, MR 1656278
Reference: [10] Krupková, O., Musilová, J.: The relativistic particle as a mechanical system with non-holonomic constraints.J. Phys. A: Math. Gen. 34 2001 3859–3875 MR 1840850, 10.1088/0305-4470/34/18/313
Reference: [11] Marle, C.-M.: Various approaches to conservative and nonconservative nonholonomic systems.Reports on mathematical physics 42 1998 211–229 Zbl 0931.37023, MR 1656282
Reference: [12] Rosenberg, R.: Analytical dynamics of discrete systems.Plenum press 1997 MR 0512893
Reference: [13] Śniatycki, J.: Orbits of families of vector fields on subcartesian spaces.Annales de L’Institut Fourier 53 2003 2257–2296 Zbl 1048.53060, MR 2044173, 10.5802/aif.2006
Reference: [14] van der Schaft, A., Maschke, B.: On the hamiltonian formulation of nonholonomic mechanical systems.Reports on mathematical physics 34 (2) 1994 225–233 Zbl 0817.70010, MR 1323130, 10.1016/0034-4877(94)90038-8
.

Files

Files Size Format View
ActaOstrav_19-2011-1_4.pdf 503.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo