Title:
|
Gradient estimates for a nonlinear equation $\Delta_fu+cu^{-\alpha}=0$ on complete noncompact manifolds (English) |
Author:
|
Zhang, Jing |
Author:
|
Ma, Bingqing |
Language:
|
English |
Journal:
|
Communications in Mathematics |
ISSN:
|
1804-1388 |
Volume:
|
19 |
Issue:
|
1 |
Year:
|
2011 |
Pages:
|
73-84 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $(M,g)$ be a complete noncompact Riemannian manifold. We consider gradient estimates on positive solutions to the following nonlinear equation $\Delta_fu+cu^{-\alpha}=0$ in $M$, where $\alpha$, $c$ are two real constants and $\alpha>0$, $f$ is a smooth real valued function on $M$ and $\Delta_f=\Delta-\nabla f\nabla$. When $N$ is finite and the $N$-Bakry-Emery Ricci tensor is bounded from below, we obtain a gradient estimate for positive solutions of the above equation. Moreover, under the assumption that $\infty$-Bakry-Emery Ricci tensor is bounded from below and $|\nabla f|$ is bounded from above, we also obtain a gradient estimate for positive solutions of the above equation. It extends the results of Yang [Yang, Y.Y. Gradient estimates for the equation $\Delta u+cu^{-\alpha}=0$ on Riemannian manifolds Acta. Math. Sin. 26(B) 2010 1177–1182]. (English) |
Keyword:
|
gradient estimates |
Keyword:
|
positive solution |
Keyword:
|
Bakry-Emery Ricci tensor |
MSC:
|
35J60 |
MSC:
|
58J05 |
idZBL:
|
Zbl 1242.58011 |
idMR:
|
MR2855392 |
. |
Date available:
|
2011-10-31T08:15:31Z |
Last updated:
|
2013-10-22 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/141680 |
. |
Reference:
|
[1] Calabi, E.: An extension of E.Hopf’s maximum principle with application to Riemannian geometry.Duke Math. J. 25 1957 45–46 MR 0092069, 10.1215/S0012-7094-58-02505-5 |
Reference:
|
[2] Chen, L., Chen, W.Y.: Gradient estimates for a nonlinear parabolic equation on complete non-compact Riemannian manifolds.Ann. Glob. Anal. Geom. 35 2009 397–404 Zbl 1177.35040, MR 2506242, 10.1007/s10455-008-9141-9 |
Reference:
|
[3] Chen, L., Chen, W.Y.: Gradient estimates for positive smooth $f$-harmonic functions.Acta Math. Sci. 30(B) 2010 1614–1618 Zbl 1240.58019, MR 2778630 |
Reference:
|
[4] Cheng, S.Y., Yau, S.T.: Differential equations on Riemannian manifolds and their geometric applications.Commun. Pure. Appl. Math. 28 1975 333–354 Zbl 0312.53031, MR 0385749, 10.1002/cpa.3160280303 |
Reference:
|
[5] Guo, Z.M., Wei, J.C.: Hausdorff dimension of ruptures for solutions of a semilinear equation with singular nonlinearity.Manuscripta Math. 120 2006 193–209 MR 2234248, 10.1007/s00229-006-0001-2 |
Reference:
|
[6] Hsu, S.Y.: Gradient estimates for a nonlinear parabolic equation under Ricci.arXiv: 0806.4004 |
Reference:
|
[7] Huang, G.Y., Ma, B.Q.: Gradient estimates for a nonlinear parabolic equation on Riemannian manifolds.Arch. Math. (Basel) 94 2010 265–275 Zbl 1194.58020, MR 2602453, 10.1007/s00013-009-0091-7 |
Reference:
|
[8] Li, J.Y.: Gradient estimates and Harnack inequalities for nonlinear parabolic and nonlinear elliptic equations on Riemannian manifolds.J. Funct. Anal. 100 1991 233–256 Zbl 0746.58078, MR 1125225, 10.1016/0022-1236(91)90110-Q |
Reference:
|
[9] Li, X.D.: Liouville theorems for symmetric diffusion operators on complete Riemannian manifolds.J. Math. Pures Appl. 84 2005 1295–1361 Zbl 1082.58036, MR 2170766 |
Reference:
|
[10] Ma, L.: Gradient estimates for a simple elliptic equation on complete non-compact Riemannian manifolds.J. Funct. Anal. 241 2006 374–382 Zbl 1112.58023, MR 2264255, 10.1016/j.jfa.2006.06.006 |
Reference:
|
[11] Ma, L., Liu, B.Y.: Convexity of the first eigenfunction of the drifting Laplacian operator and its applications.New York J. Math. 14 2008 393–401 Zbl 1156.35065, MR 2443979 |
Reference:
|
[12] Ma, L., Liu, B.Y.: Convex eigenfunction of a drifting Laplacian operator and the fundamental gap.Pacific J. Math. 240 2009 343–361 Zbl 1162.35059, MR 2485469, 10.2140/pjm.2009.240.343 |
Reference:
|
[13] Qian, Z.M.: A comparison theorem for an elliptic operator.Potential Analysis 8 1998 137–142 Zbl 0930.58012, MR 1618434, 10.1023/A:1008698923961 |
Reference:
|
[14] Wei, G.F., Wylie, W.: Comparison geometry for the Bakry-Emery Ricci tensor.J. Differential Geometry 83 2009 377–405 Zbl 1189.53036, MR 2577473 |
Reference:
|
[15] Yang, Y.Y.: Gradient estimates for a nonlinear parabolic equation on Riemannian manifolds.Proc. Amer. Math. Soc. 136 2008 4095–4102 Zbl 1151.58013, MR 2425752, 10.1090/S0002-9939-08-09398-2 |
Reference:
|
[16] Yang, Y.Y.: Gradient estimates for the equation $\Delta u+cu^{-\alpha }=0$ on Riemannian manifolds.Acta. Math. Sin. 26(B) 2010 1177–1182 Zbl 1203.58006, MR 2644055, 10.1007/s10114-010-7531-y |
. |