Previous |  Up |  Next

Article

Title: On the problem $Ax=\lambda Bx$ in max algebra: every system of intervals is a spectrum (English)
Author: Sergeev, Sergeĭ
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 47
Issue: 5
Year: 2011
Pages: 715-721
Summary lang: English
.
Category: math
.
Summary: We consider the two-sided eigenproblem $A\otimes x=\lambda\otimes B\otimes x$ over max algebra. It is shown that any finite system of real intervals and points can be represented as spectrum of this eigenproblem. (English)
Keyword: extremal algebra
Keyword: tropical algebra
Keyword: generalized eigenproblem
MSC: 15A22
MSC: 15A80
MSC: 91A46
MSC: 93C65
idZBL: Zbl 1248.15023
idMR: MR2850458
.
Date available: 2011-11-10T15:37:51Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/141686
.
Reference: [1] Akian, M., Bapat, R., Gaubert, S.: Max-plus algebras.In: Handbook of Linear Algebra (L. Hogben, ed.), Discrete Math. Appl. 39, Chapter 25, Chapman and Hall 2006. 10.1201/9781420010572.ch25
Reference: [2] Baccelli, F. L., Cohen, G., Olsder, G.-J., Quadrat, J.-P.: Synchronization and Linearity: An Algebra for Discrete Event Systems.Wiley 1992. Zbl 0824.93003, MR 1204266
Reference: [3] Binding, P. A., Volkmer, H.: A generalized eigenvalue problem in the max algebra.Linear Algebra Appl. 422 (2007), 360–371. Zbl 1121.15011, MR 2305125
Reference: [4] Brunovsky, P.: A classification of linear controllable systems.Kybernetika 6 (1970), 173–188. Zbl 0199.48202, MR 0284247
Reference: [5] Burns, S. M.: Performance Analysis and Optimization of Asynchronous Circuits.PhD Thesis, California Institute of Technology 1991. MR 2686560
Reference: [6] Butkovič, P.: Max-algebra: the linear algebra of combinatorics? Linear Algebra Appl.367 (2003), 313–335. MR 1976928
Reference: [7] Butkovič, P.: Max-linear Systems: Theory and Algorithms.Springer 2010. Zbl 1202.15032, MR 2681232
Reference: [8] Cochet-Terrasson, J., Cohen, G., Gaubert, S., Gettrick, M. M., Quadrat, J. P.: Numerical computation of spectral elements in max-plus algebra.In: Proc. IFAC Conference on Systems Structure and Control, IRCT, Nantes 1998, pp. 699–706.
Reference: [9] Cuninghame-Green, R. A.: Minimax Algebra.Lecture Notes in Econom. and Math. Systems 166, Springer, Berlin 1979. Zbl 0399.90052, MR 0580321
Reference: [10] Cuninghame-Green, R. A., Butkovič, P.: The equation $A\otimes x=B\otimes y$ over (max,+).Theoret. Comput. Sci. 293 (2003), 3–12. Zbl 1021.65022, MR 1957609, 10.1016/S0304-3975(02)00228-1
Reference: [11] Cuninghame-Green, R. A., Butkovič, P.: Generalised eigenproblem in max algebra.In: Proc. 9th International Workshop WODES 2008, pp. 236–241.
Reference: [12] Elsner, L., Driessche, P. van den: Modifying the power method in max algebra.Linear Algebra Appl. 332–334 (2001), 3–13. MR 1839423
Reference: [13] Gantmacher, F. R.: The Theory of Matrices.Chelsea, 1959. Zbl 0085.01001
Reference: [14] Gaubert, S., Sergeev, S.: The level set method for the two-sided eigenproblem.E-print http://arxiv.org/pdf/1006.5702.
Reference: [15] Heidergott, B., Olsder, G.-J., Woude, J. van der: Max-plus at Work.Princeton Univ. Press, 2005.
Reference: [16] McDonald, J. J., Olesky, D. D., Schneider, H., Tsatsomeros, M. J., Driessche, P. van den: Z-pencils.Electron. J. Linear Algebra 4 (1998), 32–38. MR 1643088
Reference: [17] Mehrmann, V., Nabben, R., Virnik, E.: Generalization of Perron-Frobenius theory to matrix pencils.Linear Algebra Appl. 428 (2008), 20–38. MR 2372583
.

Files

Files Size Format View
Kybernetika_47-2011-5_4.pdf 269.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo