Previous |  Up |  Next

Article

Title: Generalized logistic model and its orthant tail dependence (English)
Author: Ferreira, Helena
Author: Pereira, Luisa
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 47
Issue: 5
Year: 2011
Pages: 732-739
Summary lang: English
.
Category: math
.
Summary: The Multivariate Extreme Value distributions have shown their usefulness in environmental studies, financial and insurance mathematics. The Logistic or Gumbel-Hougaard distribution is one of the oldest multivariate extreme value models and it has been extended to asymmetric models. In this paper we introduce generalized logistic multivariate distributions. Our tools are mixtures of copulas and stable mixing variables, extending approaches in Tawn [14], Joe and Hu [6] and Fougères et al. [3]. The parametric family of multivariate extreme value distributions considered presents a flexible dependence structure and we compute for it the multivariate tail dependence coefficients considered in Li [7]. (English)
Keyword: multivariate extreme value distribution
Keyword: tail dependence
Keyword: logistic model
Keyword: mixture
MSC: 60G70
idZBL: Zbl 1250.62027
idMR: MR2850460
.
Date available: 2011-11-10T15:40:07Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/141688
.
Reference: [1] Capéraà, P., Fougères, A. L., Genest, C.: Bivariate distributions with given extreme value attractor.J. Multivariate Anal. 72 (2000), 30–49. MR 1747422, 10.1006/jmva.1999.1845
Reference: [2] Cuadras, C. M., Augé, J.: A continuous general multivariate distribution and its properties.Comm. Statist. A - Theory Methods 10 (1981), 339–353. MR 0612401, 10.1080/03610928108828042
Reference: [3] Fougères, A.-L., Nolan, J. P., Rootzén, H.: Models for dependent extremes using scale mixtures.Scand. J. Statist. 36 (2009), 42–59. MR 2508330
Reference: [4] Heffernan, J. E., Tawn, J. A., Zhang, Z.: Asymptotically (in)dependent multivariate maxima of moving maxima processes.Extremes 10 (2007), 57–82. MR 2397551, 10.1007/s10687-007-0035-1
Reference: [5] Joe, H.: Multivariate Models and Dependence Concepts.Chapman & Hall, London 1997. MR 1462613
Reference: [6] Joe, H., Hu, T.: Multivariate distributions from mixtures of max-infinitely divisible distributions.J. Multivariate Anal. 57 (1996), 240–265. Zbl 0863.62047, MR 1391171, 10.1006/jmva.1996.0032
Reference: [7] Li, H.: Orthant tail dependence of multivariate extreme value distributions.J. Multivariate Anal. 100 (2009), 243–256. Zbl 1151.62041, MR 2460490, 10.1016/j.jmva.2008.04.007
Reference: [8] Marshall, A. W., Olkin, I.: Families of multivariate distributions.J. Amer. Statist. Assoc. 83 (1988), 834–841. Zbl 0683.62029, MR 0963813, 10.1080/01621459.1988.10478671
Reference: [9] McNeil, A. J., Frey, R., Embrechts, P.: Quantitative Risk Management: Concepts, Techniques and Tools.Princeton University Press, Princeton 2005. Zbl 1089.91037, MR 2175089
Reference: [10] Morillas, P. M.: A method to obtain new copulas from a given one.Metrika 61 (2005), 169–184. Zbl 1079.62056, MR 2159414, 10.1007/s001840400330
Reference: [11] Nelsen, R. B.: An Introduction to Copulas.Springer, New York 1999. Zbl 0909.62052, MR 1653203
Reference: [12] Schmid, F., Schmidt, R.: Multivariate conditional versions of Spearman’s rho and related measures of tail dependence.J. Multivariate Anal. 98 (2007), 1123–1140. Zbl 1116.62061, MR 2326243, 10.1016/j.jmva.2006.05.005
Reference: [13] Smith, R. L., Weissman, I.: Characterization and Estimation of the Multivariate Extremal Index.Technical Report, Univ. North Carolina 1996.
Reference: [14] Tawn, J.: Modelling multivariate extreme value distributions.Biometrika 77 (1990), 2, 245–253. Zbl 0716.62051, 10.1093/biomet/77.2.245
.

Files

Files Size Format View
Kybernetika_47-2011-5_6.pdf 273.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo