Previous |  Up |  Next

Article

Title: On the existence of a Haar measure in topological IP-loops (English)
Author: Stehlíková, Beáta
Author: Markechová, Dagmar
Author: Tirpáková, Anna
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 47
Issue: 5
Year: 2011
Pages: 740-754
Summary lang: English
.
Category: math
.
Summary: In this paper, we give conditions ensuring the existence of a Haar measure in topological IP-loops. (English)
Keyword: quasigroup
Keyword: topological IP-loop
Keyword: Haar measure
Keyword: content
Keyword: uniform
Keyword: space
Keyword: left-invariant uniformity
MSC: 20N05
MSC: 28C10
idZBL: Zbl 1242.28022
idMR: MR2850461
.
Date available: 2011-11-10T15:41:30Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/141689
.
Reference: [1] Baez, J.: The Octonions.Bull. Amer. Math. Soc. 39 (2002), 145–205. Zbl 1026.17001, MR 1886087, 10.1090/S0273-0979-01-00934-X
Reference: [2] Belousov, V. D.: Foundations of the Theory of Quasigroups and Loops (in Russian).Nauka, Moscow, 1967. MR 0218483
Reference: [3] Bruck, R. H.: Some results in the theory of quasigroups.Trans. Amer. Math. Soc. 55 (1944), 19–52. Zbl 0063.00635, MR 0009963
Reference: [4] Bruck, R. H.: Contributions to the theory of loops.Trans. Amer. Math. Soc. 60 (1946), 245–354. Zbl 0061.02201, MR 0017288
Reference: [5] Haar, A.: Der Massbegriff in der Theorie der kontinuierlichen Gruppen.Ann. Math. 34 (1933), 147–169. Zbl 0006.10103, MR 1503103, 10.2307/1968346
Reference: [6] Halmos, P.: Measure Theory.Springer-Verlag New York Inc. 1974. Zbl 0283.28001, MR 0453532
Reference: [7] Hudson, S. N.: Transformation groups in the theory of topological loops.Proc. Amer. Math. Soc. 15 (1964), 872–877. MR 0167962, 10.1090/S0002-9939-1964-0167962-X
Reference: [8] Hudson, S. N.: Topological loops with invariant uniformities.Trans. Amer. Math. Soc. 109 (1963), 1, 181–190. Zbl 0115.02501, MR 0155302, 10.1090/S0002-9947-1963-0155302-5
Reference: [9] Chein, O., Pflugfelder, H. O., Smith, J. D. H.: Quasigroups and Loops.Theory and Application. Heldermann Verlag, 1990. Zbl 0719.20036, MR 1125806
Reference: [10] Kinyon, M. K., Kunen, K., Phillips, J. D.: Every diassociative A-loop is Moufang.Proc. Amer. Math. Soc. 130 (2002), 619–624. Zbl 0990.20044, MR 1866009, 10.1090/S0002-9939-01-06090-7
Reference: [11] Markechová, D., Stehlíková, B., Tirpáková, A.: The uniqueness of a left Haar measure in topological IP-loops.(Submitted for publication).
Reference: [12] Moufang, R.: Zur Struktur von alternativ Korpern.Math. Ann. 110 (1935), 416–430. MR 1512948, 10.1007/BF01448037
Reference: [13] Nagy, P. T., Strambach, K.: Coverings of topological loops.J. Math. Sci. 137 (2006), 5, 5098–5116. Zbl 1181.22009, MR 2462071, 10.1007/s10958-006-0289-1
Reference: [14] Nagy, P. T., Strambach, K.: Loops in Group Theory and Lie Theory.De Gruyter Expositions in Mathematics, Berlin – New York 2002. Zbl 1050.22001, MR 1899331
Reference: [15] Pflugfelder, H. O.: Quasigroups and Loops.Introduction. Heldermann Verlag, 1990. Zbl 0719.20036, MR 1125767
Reference: [16] Riečan, B., Neubrunn, T.: Integral, Measure and Ordering.Kluwer Academic Publishers 1997. MR 1489521
Reference: [17] Schwarz, Š.: On the existence of invariant measures on certain types of bicompact semigroups (in Russian).Czechoslovak Math. J. 7 (1957), 82, 165–182. MR 0089364
Reference: [18] Smith, J. D. H.: Quasigroup Representation Theory.Taylor & Francis, 2006.
Reference: [19] Weil, A.: Basic Number Theory.Academic Press, 1971.
.

Files

Files Size Format View
Kybernetika_47-2011-5_7.pdf 299.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo