Previous |  Up |  Next

Article

Title: The stability analysis of a discretized pantograph equation (English)
Author: Jánský, Jiří
Author: Kundrát, Petr
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 136
Issue: 4
Year: 2011
Pages: 385-394
Summary lang: English
.
Category: math
.
Summary: The paper deals with a difference equation arising from the scalar pantograph equation via the backward Euler discretization. A case when the solution tends to zero but after reaching a certain index it loses this tendency is discussed. We analyse this problem and estimate the value of such an index. Furthermore, we show that the utilized proof technique enables us to investigate some other numerical formulae, too. (English)
Keyword: pantograph equation
Keyword: numerical solution
Keyword: stability
MSC: 34K28
MSC: 39A06
MSC: 39A12
MSC: 39A30
MSC: 65L03
MSC: 65L05
MSC: 65L12
MSC: 65L20
idZBL: Zbl 1245.65103
idMR: MR2985548
DOI: 10.21136/MB.2011.141698
.
Date available: 2011-11-10T15:51:10Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/141698
.
Reference: [1] Bakke, V. L., Jackiewicz, Z.: Stability analysis of linear multistep methods for delay differential equations.Int. J. Math. Math. Sci. 9 (1986), 447-458. Zbl 0622.65057, MR 0859113, 10.1155/S0161171286000583
Reference: [2] Bellen, A., Guglielmi, N., Torelli, L.: Asymptotic stability properties of $\Theta$ methods for the pantograph equation.Appl. Numer. Math. 24 (1997), 279-293. Zbl 0878.65064, MR 1464729, 10.1016/S0168-9274(97)00026-3
Reference: [3] Bellen, A., Zennaro, M.: Numerical Methods for Delay Differential Equations.Oxford University Press (2003). Zbl 1038.65058, MR 1997488
Reference: [4] Čermák, J., Jánský, J.: On the asymptotics of the trapezoidal rule for the pantograph equation.Math. Comp. 78 (2009), 2107-2126. Zbl 1198.65112, MR 2521280, 10.1090/S0025-5718-09-02245-5
Reference: [5] Elaydi, S.: An Introduction to Difference Equations.Springer (2005). Zbl 1071.39001, MR 2128146
Reference: [6] Györi, I., Pituk, M.: Comparison theorems and asymptotic equilibrium for delay differential and difference equations.Dynam. Systems Appl. 5 (1996), 277-302. MR 1396192
Reference: [7] Iserles, A.: Exact and discretized stability of the pantograph equation.Appl. Numer. Math. 24 (1997), 295-308. Zbl 0880.65058, MR 1464730, 10.1016/S0168-9274(97)00027-5
Reference: [8] Kundrát, P.: Asymptotic properties of the discretized pantograph equation.Studia Univ. Babeş-Bolyai, Mathematica 50 (2005), 77-84. Zbl 1112.39004, MR 2175107
Reference: [9] Kuruklis, S. A.: The asymptotic stability of $x_{n+1}-ax_n+bx_{n-k}=0$.J. Math. Anal. Appl. 188 (1994), 719-731. MR 1305480
Reference: [10] Liu, Y.: Numerical investigation of the pantograph equation.Appl. Numer. Math. 24 (1997), 309-317. Zbl 0878.65065, MR 1464731, 10.1016/S0168-9274(97)00028-7
.

Files

Files Size Format View
MathBohem_136-2011-4_5.pdf 235.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo