Article
Keywords:
Laplace operator; multiplicative perturbation; Dirichlet problem; Friedrichs extension; purely discrete spectra; purely continuous spectra
Summary:
We investigate the spectral properties of the differential operator $-r^s \Delta $, $s\ge 0$ with the Dirichlet boundary condition in unbounded domains whose boundaries satisfy some geometrical condition. Considering this operator as a self-adjoint operator in the space with the norm $\|u\|^2_{L_{2, s} (\Omega )}= \int _{\Omega } r^{-s} |u|^2 {\rm d} x $, we study the structure of the spectrum with respect to the parameter $s$. Further we give an estimate of the rate of condensation of discrete spectra when it changes to continuous.
References:
[3] A., Ladyzhenskaya O., N., Uraltseva N.:
Linear and Quasilinear Equations of Elliptic Type. Second edition, revised. Nauka, Moskva (1973), 576 Russian.
MR 0509265
[4] M., Glazman I.:
Direct Methods of Qualitative Spectral Analysis of Singular Differential Operators. Oldbourne Press, London (1965), 234.
MR 0190800 |
Zbl 0143.36505
[5] A., Berezin F., A., Shubin M.:
The Schrodinger Equation. Moskov. Gos. Univ., Moskva (1983), 392 Russian.
MR 0739327
[6] M., Abramowitz, I.A., Stegun:
Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. Dover Publications (1964), 1058.
MR 1225604 |
Zbl 0171.38503
[7] M., Landis E.:
On some properties of solutions of elliptic equations. Dokl. Akad. Nauk SSSR 107 (1956), 640-643 Russian.
MR 0078557 |
Zbl 0075.28201