Previous |  Up |  Next

Article

Title: $F$-manifolds and integrable systems of hydrodynamic type (English)
Author: Lorenzoni, Paolo
Author: Pedroni, Marco
Author: Raimondo, Andrea
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 47
Issue: 3
Year: 2011
Pages: 163-180
Summary lang: English
.
Category: math
.
Summary: We investigate the role of Hertling-Manin condition on the structure constants of an associative commutative algebra in the theory of integrable systems of hydrodynamic type. In such a framework we introduce the notion of $F$-manifold with compatible connection generalizing a structure introduced by Manin. (English)
Keyword: F-manifolds
Keyword: Frobenius manifolds
Keyword: integrable systems
Keyword: PDEs of hydrodynamic type
MSC: 35Q35
MSC: 53B05
MSC: 53D45
idZBL: Zbl 1249.35267
idMR: MR2852379
.
Date available: 2011-11-11T08:50:10Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/141704
.
Reference: [1] Benney, D. J.: Some properties of long nonlinear waves.Stud. Appl. Math. 52 (1973), 45–50. Zbl 0259.35011
Reference: [2] Chang, Jen-Hsu: On the waterbag model of the dispersionless KP hierarchy (II).J. Phys. A: Math. Theor. 40 (2007), 12973–12785. Zbl 1127.37047, MR 2385221, 10.1088/1751-8113/40/43/009
Reference: [3] Dubrovin, B. A.: Geometry of 2D topological field theories.Integrable Systems and Quantum Groups (Francaviglia, M., Greco, S., eds.), vol. 1620, Montecatini Terme, 1993, springer lecture notes in math. ed., 1996, pp. 120–348. Zbl 0841.58065, MR 1397274
Reference: [4] Dubrovin, B. A.: Flat pencils of metrics and Frobenius manifolds.Integrable systems and algebraic geometry, World Sci. Publ., River Edge, NJ, 1998, pp. 47–72. Zbl 0963.53054, MR 1672100
Reference: [5] Dubrovin, B. A., Liu, S. Q., Zhang, Y.: Frobenius manifolds and central invariants for the Drinfeld–Sokolov biHamiltonian structures.Adv. Math. 120 (3) (2008), 780–837. Zbl 1153.37032, MR 2442053, 10.1016/j.aim.2008.06.009
Reference: [6] Dubrovin, B. A., Novikov, S. P.: Hydrodynamics of weakly deformed soliton lattices. Differential geometry and Hamiltonian theory.Uspekhi Mat. Nauk 44 (1989), 35–124, English translation in Russ. Math. Surveys 44 (1989), 35–124. Zbl 0712.58032, MR 1037010
Reference: [7] Dubrovin, B.A.: Differential geometry of strongly integrable systems of hydrodynamic type.Funct. Anal. Appl. 24 (4) (1990), 280–285, (English. Russian original), translation from Funkts. Anal. Prilozh. 24, No.4, 25-30 (1990). Zbl 0850.76008, MR 1092800, 10.1007/BF01077332
Reference: [8] Ferapontov, E. V.: Differential geometry of nonlocal Hamiltonian operators of hydrodynamic type.Funct. Anal. Appl. 25 (3) (1991), 195–204. Zbl 0742.58018, MR 1139873, 10.1007/BF01085489
Reference: [9] Ferguson, J. T., Strachan, I. A. B.: Logarithmic deformations of the rational superpotential/Landau-Ginzburg construction of solutions of the WDVV equations.Comm. Math. Phys. 280 (2008), 1–25. Zbl 1148.53067, MR 2391189, 10.1007/s00220-008-0464-y
Reference: [10] Gibbons, J., Lorenzoni, P., Raimondo, A.: Purely nonlocal Hamiltonian formalism for systems of hydrodynamic type.arXiv:0812.3317. Zbl 1197.53099, MR 2654091
Reference: [11] Gibbons, J., Lorenzoni, P., Raimondo, A.: Hamiltonian structure of reductions of the Benney system.Comm. Math. Phys. 287 (2009), 291–322. MR 2480750, 10.1007/s00220-008-0686-z
Reference: [12] Gibbons, J., Tsarev, S. P.: Reductions of the Benney equations.Phys. Lett. A 211 (1) (1996), 19–24. Zbl 1072.35588, MR 1372470, 10.1016/0375-9601(95)00954-X
Reference: [13] Gibbons, J., Tsarev, S. P.: Conformal maps and reductions of the Benney equations.Phys. Lett. A 258 (4–6) (1999), 263–271. Zbl 0936.35184, MR 1710008, 10.1016/S0375-9601(99)00389-8
Reference: [14] Hertling, C.: Multiplication on the tangent bundle.arXiv:math/9910116.
Reference: [15] Hertling, C., Manin, Y.: Weak Frobenius manifolds.Internat. Math. Res. Notices 6 (1999), 277–286. Zbl 0960.58003, MR 1680372, 10.1155/S1073792899000148
Reference: [16] Konopelchenko, B. G., Magri, F.: Coisotropic deformations of associative algebras and dispersionless integrable hierarchies.Comm. Math. Phys. 274 (2007), 627–658. Zbl 1136.37038, MR 2328906, 10.1007/s00220-007-0295-2
Reference: [17] Lebedev, D., Manin, Y.: Conservation laws and Lax representation of Benney’s long wave equations.Phys. Lett. A 74 (1979), 154–156. MR 0591318, 10.1016/0375-9601(79)90756-4
Reference: [18] Manin, Y.: $F$-manifolds with flat structure and Dubrovin’s duality.Adv. Math. 198 (1) (2005), 5–26. Zbl 1085.14023, MR 2183247, 10.1016/j.aim.2004.12.003
Reference: [19] Mokhov, O. I.: Nonlocal Hamiltonian operators of hydrodynamic type with flat metrics, integrable hierarchies, and associativity equations.Funct. Anal. Appl. 40 (2006), 11–23. MR 2223246, 10.1007/s10688-006-0002-7
Reference: [20] Mokhov, O. I.: Frobenius manifolds as a special class of submanifolds in pseudo-Euclidean spaces.Geometry, Topology, and Mathematical Physics, vol. 224, Amer. Math. Soc. Transl. Ser. 2, 2008, pp. 213–246. Zbl 1155.53056, MR 2462363
Reference: [21] Mokhov, O. I., Ferapontov, E. V.: Nonlocal Hamiltonian operators of hydrodynamic type that are connected with metrics of constant curvature.Russ. Math. Surv. 45 (3) (1990), 218–219. MR 1071942, 10.1070/RM1990v045n03ABEH002351
Reference: [22] Pavlov, M. V.: Integrability of Egorov systems of hydrodynamic type.Teoret. Mat. Fiz. 150 (2) (2007), 263–285, (Russian) translation in Theoret. and Math. Phys. 150 (2) (2007), 225–243. MR 2325928
Reference: [23] Pavlov, M. V., Svinolupov, S. I., Sharipov, R. A.: An invariant criterion for hydrodynamic integrability.Funktsional. Anal. i Prilozhen 30 (1) (1996), 18–29, 96, (Russian) translation in Funct. Anal. Appl. 30 (1) (1996), 15–22. MR 1387485, 10.1007/BF02509552
Reference: [24] Pavlov, M. V., Tsarev, S. P.: Tri-Hamiltonian structures of Egorov systems of hydrodynamic type.Funktsional. Anal. i Prilozhen. 37 (1) (2003), 38–54, (Russian). Zbl 1019.37048, MR 1988008, 10.1023/A:1022971910438
Reference: [25] Strachan, I. A. B.: Frobenius manifolds: natural submanifolds and induced bi-Hamiltonian structures.Differential Geom. Appl. 20 (1) (2004), 67–99. Zbl 1049.53060, MR 2030167, 10.1016/j.difgeo.2003.10.001
Reference: [26] Tsarev, S. P.: The geometry of Hamiltonian systems of hydrodynamic type. The generalised hodograph transform.USSR Izv. 37 (1991), 397–419. MR 1086085, 10.1070/IM1991v037n02ABEH002069
Reference: [27] Zakharov, V. E.: Benney equations and quasiclassical approximation in the inverse problem.Funktional. Anal. i Prilozhen 14 (1980), 15–24. MR 0575201
.

Files

Files Size Format View
ArchMathRetro_047-2011-3_1.pdf 501.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo