Previous |  Up |  Next

Article

Title: On the oscillation of third-order quasi-linear neutral functional differential equations (English)
Author: Thandapani, E.
Author: Li, Tongxing
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 47
Issue: 3
Year: 2011
Pages: 181-199
Summary lang: English
.
Category: math
.
Summary: The aim of this paper is to study asymptotic properties of the third-order quasi-linear neutral functional differential equation \begin{equation*} \big [a(t)\big ([x(t)+p(t)x(\delta (t))]^{\prime \prime }\big )^\alpha \big ]^{\prime }+q(t)x^\alpha (\tau (t))=0\,, E \end{equation*} where $\alpha >0$, $0\le p(t)\le p_0<\infty $ and $\delta (t)\le t$. By using Riccati transformation, we establish some sufficient conditions which ensure that every solution of () is either oscillatory or converges to zero. These results improve some known results in the literature. Two examples are given to illustrate the main results. (English)
Keyword: third-order
Keyword: neutral functional differential equations
Keyword: oscillation and asymptotic behavior
MSC: 34C10
MSC: 34K11
idZBL: Zbl 1249.34194
idMR: MR2852380
.
Date available: 2011-11-11T08:51:14Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/141706
.
Reference: [1] Baculíková, B., Džurina, J.: Oscillation of third-order functional differential equations.Electron. J. Qual. Theory Differ. Equ. 43 (2010), 1–10. Zbl 1211.34077, MR 2678385
Reference: [2] Baculíková, B., Džurina, J.: Oscillation of third-order neutral differential equations.Math. Comput. Modelling 52 (2010), 215–226. Zbl 1201.34097, MR 2645933, 10.1016/j.mcm.2010.02.011
Reference: [3] Baculíková, B., Džurina, J.: Oscillation of third-order nonlinear differential equations.Appl. Math. Lett. 24 (2011), 466–470. Zbl 1209.34042, MR 2749728, 10.1016/j.aml.2010.10.043
Reference: [4] Baculíková, B., Elabbasy, E. M., Saker, S. H., Džurina, J.: Oscillation criteria for third-order nonlinear differential equations.Math. Slovaca 58 (2008), 1–20. Zbl 1174.34052, MR 2391214, 10.2478/s12175-008-0068-1
Reference: [5] Erbe, L.: Existence of oscillatory solutions and asymptotic behavior for a class of third order linear differential equations.Pacific J. Math. 64 (1976), 369–385. Zbl 0339.34030, MR 0435508, 10.2140/pjm.1976.64.369
Reference: [6] Grace, S. R., Agarwal, R. P., Pavani, R., Thandapani, E.: On the oscillation of certain thir d order nonlinear functional differential equations.Appl. Math. Comput. 202 (2008), 102–112. MR 2437140, 10.1016/j.amc.2008.01.025
Reference: [7] Han, Z., Li, T., Zhang, C., Sun, S.: An oscillation criterion for third order neutral delay differential equations.J. Appl. Anal., to appear. MR 2740504
Reference: [8] Hanan, M.: Oscillation criteria for third order differential equations.Pacific J. Math. 11 (1961), 919–944. MR 0145160, 10.2140/pjm.1961.11.919
Reference: [9] Hartman, P., Winter, A.: Linear differential and difference equations with monotone solutions.Amer. J. Math. 75 (1953), 731–743. MR 0057404, 10.2307/2372548
Reference: [10] Karpuz, B., Öcalan, Ö., Öztürk, S.: Comparison theorems on the oscillation and asymptotic behavior of higher-order neutral differential equations.Glasgow Math. J. 52 (2010), 107–114. MR 2587820, 10.1017/S0017089509990188
Reference: [11] Philos, Ch. G.: Oscillation theorems for linear differential equations of second order.Arch. Math. 53 (1989), 482–492. Zbl 0661.34030, MR 1019162, 10.1007/BF01324723
Reference: [12] Saker, S. H., Džurina, J.: On the oscillation of certain class of third-order nonlinear delay differential equations.Math. Bohem. 135 (2010), 225–237. Zbl 1224.34217, MR 2683636
Reference: [13] Zhong, J., Ouyang, Z., Zou, S.: Oscillation criteria for a class of third-order nonlinear neutral differential equations.J. Appl. Anal. (2010), to appear.
.

Files

Files Size Format View
ArchMathRetro_047-2011-3_2.pdf 545.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo