Title:
|
A ($\alpha $)-Stable Linear Multistep Methods for Stiff IVPs in ODEs (English) |
Author:
|
Okuonghae, R. I. |
Author:
|
Ikhile, M. N. O. |
Language:
|
English |
Journal:
|
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica |
ISSN:
|
0231-9721 |
Volume:
|
50 |
Issue:
|
1 |
Year:
|
2011 |
Pages:
|
73-90 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper, a class of A($\alpha $)-stable linear multistep formulas for stiff initial value problems (IVPs) in ordinary differential equations (ODEs) is developed. The boundary locus of the methods shows that the schemes are A-stable for step number $k\le 3$ and stiffly stable for $k=4, 5$ and $6$. Some numerical results are reported to illustrate the method. (English) |
Keyword:
|
second derivative method |
Keyword:
|
collocation and interpolation |
Keyword:
|
initial value problem |
Keyword:
|
stiff stability |
Keyword:
|
boundary locus |
MSC:
|
65L05 |
MSC:
|
65L06 |
idZBL:
|
Zbl 1244.65098 |
idMR:
|
MR2920700 |
. |
Date available:
|
2011-12-08T09:51:13Z |
Last updated:
|
2013-09-18 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/141714 |
. |
Reference:
|
[1] Butcher, J. C.: The Numerical Analysis of Ordinary Differential Equation: Runge Kutta and General Linear Methods. Wiley, Chichester, 1987. MR 0878564 |
Reference:
|
[2] Butcher, J. C.: High Order A-stable Numerical Methods for Stiff Problems. Journal of Scientific Computing 25 (2005), 51–66. Zbl 1203.65106, MR 2231942 |
Reference:
|
[3] Butcher, J. C., Hojjati, G.: Second derivative methods with RK stability. Numer. Algorithms 40 (2005), 415–429. Zbl 1084.65069, MR 2191975, 10.1007/s11075-005-0413-1 |
Reference:
|
[4] Butcher, J. C.: Forty-five years of A-stability.. In: Numerical Analysis and Applied Mathematics: International Conference on Numerical Analysis and Applied Mathematics 2008. AIP Conference Proceedings 1048 (2008). MR 2598780 |
Reference:
|
[5] Butcher, J. C.: Numerical Methods for Ordinary Differential Equations. sec. edi., Wiley, Chichester, 2008. Zbl 1167.65041, MR 2401398 |
Reference:
|
[6] Butcher, J. C.: General linear methods for ordinary differential equations. Mathematics and Computers in Simulation 79 (2009), 1834–1845. Zbl 1159.65333, MR 2494513, 10.1016/j.matcom.2007.02.006 |
Reference:
|
[7] Butcher, J. C.: Trees and numerical methods for ordinary differential equations. Numerical Algorithms 53 (2010), 153–170. Zbl 1184.65072, MR 2600925, 10.1007/s11075-009-9285-0 |
Reference:
|
[8] Dahlquist, G.: A special stability problem for linear multistep methods. BIT 3 (1963), 27–43. Zbl 0123.11703, MR 0170477, 10.1007/BF01963532 |
Reference:
|
[9] Enright, W. H.: Second derivative multistep methods for stiff ODEs. SIAM J. Num. Anal. 11 (1974), 321–331. MR 0351083, 10.1137/0711029 |
Reference:
|
[10] Enright, W. H.: Continuous numerical methods for ODEs with defect control. J. Comput. Appl. Math. 125 (2000), 159–170. Zbl 0982.65078, MR 1803189, 10.1016/S0377-0427(00)00466-0 |
Reference:
|
[11] Enright, W. H., Hull, T. E., Linberg, B.: Comparing numerical Methods for Stiff of ODEs systems. BIT 15 (1975), 1–48. 10.1007/BF01932994 |
Reference:
|
[12] Fatunla, S. O.: Numerical Methods for Initial Value Problems in ODEs. Academic Press, New York, 1978. |
Reference:
|
[13] Gear, C. W.: The automatic integration of stiff ODEs. In: Morrell, A.J.H. (ed.) Information processing 68: Proc. IFIP Congress, Edinurgh, 1968 Nort-Holland, Amsterdam, 1968, 187–193. MR 0260180 |
Reference:
|
[14] Gear, C. W.: The automatic integration of ODEs. Comm. ACM 14 (1971), 176–179. MR 0388778, 10.1145/362566.362571 |
Reference:
|
[15] Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems. Springer-Verlag, Berlin, 1996. Zbl 0859.65067, MR 1439506 |
Reference:
|
[16] Higham, J. D., Higham, J. N.: Matlab Guide. SIAM, Philadelphia, 2000. Zbl 0953.68642, MR 1787308 |
Reference:
|
[17] Ikhile, M. N. O., Okuonghae, R. I.: Stiffly stable continuous extension of second derivative LMM with an off-step point for IVPs in ODEs. J. Nig. Assoc. Math. Phys. 11 (2007), 175–190. |
Reference:
|
[18] Lambert, J. D.: Numerical Methods for Ordinary Differential Systems. The Initial Value Problems. Wiley, Chichester, 1991. MR 1127425 |
Reference:
|
[19] Lambert, J. D.: Computational Methods for Ordinary Differential Systems. The Initial Value Problems. Wiley, Chichester, 1973. MR 0423815 |
Reference:
|
[20] Okuonghae, R. I.: Stiffly Stable Second Derivative Continuous LMM for IVPs in ODEs. Ph.D. Thesis, Dept. of Maths. University of Benin, Benin City. Nigeria, 2008. |
Reference:
|
[21] Selva, M., Arevalo, C., Fuherer, C.: A Collocation formulation of multistep methods for variable step-size extensions. Appl. Numer. Math. 42 (2002), 5–16. MR 1921325, 10.1016/S0168-9274(01)00138-6 |
Reference:
|
[22] Widlund, O.: A note on unconditionally stable linear multistep methods. BIT 7 (1967), 65–70. Zbl 0178.18502, MR 0215533, 10.1007/BF01934126 |
. |