Previous |  Up |  Next

Article

Title: The Projectivization of Conformal Models of Fibrations Determined by the Algebra of Quaternions (English)
Author: Kuzmina, Irina A.
Author: Mikeš, Josef
Author: Vanžurová, Alena
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 50
Issue: 1
Year: 2011
Pages: 91-98
Summary lang: English
.
Category: math
.
Summary: Our aim is to study the principal bundles determined by the algebra of quaternions in the projective model. The projectivization of the conformal model of the Hopf fibration is considered as example. (English)
Keyword: conformal mapping
Keyword: geodesic mapping
Keyword: conformal-geodesic mapping
Keyword: initial conditions
Keyword: (pseudo-) Riemannian space
MSC: 53B20
MSC: 53B30
MSC: 53C21
idZBL: Zbl 1252.53023
idMR: MR2920701
.
Date available: 2011-12-08T09:52:02Z
Last updated: 2013-09-18
Stable URL: http://hdl.handle.net/10338.dmlcz/141722
.
Reference: [1] Berger, M.: Geometry I. Springer, New York– Berlin–Heidelberg, 1987. Zbl 0606.51001
Reference: [2] Jukl, M.: On homologies of Klingenberg projective spaces oven special commutative local rings. Publ. Math. Univ. Debrec. 55 (1999), 113–121. MR 1708406
Reference: [3] Jukl, M., Snášel, V.: Projective equivalence of quadrics in Klingenberg projective spaces over a special local ring. Int. Electr. J. Geom. 2 (2009), 34–38. Zbl 1202.51005, MR 2558710
Reference: [4] Kuzmina, I. A., Shapukov, B. N.: Conformal and elliptic models of the Hopf fibration. Tr. geom. sem. Kazan. Univ. 24 (2003), 81–98.
Reference: [5] Luonesto, P.: Clifford Algebras and Spinors. Cambridge Univ. Press, Cambridge, 1997. MR 1473721
Reference: [6] Norden, A. P.: Normalization theory and vector bundles. Tr. Geom. Semin. 9 (1976), 68–76, (in Russian). Zbl 0466.53006, MR 0493799
Reference: [7] Norden, A. P.: Spaces of Affine Connection. Nauka, Moscow, 1976. MR 0467565
Reference: [8] Rozenfeld, B. A.: Higher-dimensional Spaces. Nauka, Moscow, 1966.
Reference: [9] Rozenfeld, B. A.: Geometry of Lie Groups. Kluwer, Dordrecht–Boston–London, 1997.
Reference: [10] Shapukov, B. N.: Connections on a differential fibred bundle. Tr. geom. sem. Kazan. Univ. 1 (1980), 97–109.
Reference: [11] Shirokov, A. P.: Non-Euclidean Spaces. Kazan University, Kazan, 1997, (in Russian). Zbl 0933.51011
.

Files

Files Size Format View
ActaOlom_50-2011-1_8.pdf 215.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo