Title:
|
One Bootstrap suffices to generate sharp uniform bounds in functional estimation (English) |
Author:
|
Deheuvels, Paul |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 |
Volume:
|
47 |
Issue:
|
6 |
Year:
|
2011 |
Pages:
|
855-865 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We consider, in the framework of multidimensional observations, nonparametric functional estimators, which include, as special cases, the Akaike–Parzen–Rosenblatt kernel density estimators ([1, 18, 20]), and the Nadaraya–Watson kernel regression estimators ([16, 22]). We evaluate the sup-norm, over a given set ${\bf I}$, of the difference between the estimator and a non-random functional centering factor (which reduces to the estimator mean for kernel density estimation). We show that, under suitable general conditions, this random quantity is consistently estimated by the sup-norm over ${\bf I}$ of the difference between the original estimator and a bootstrapped version of this estimator. This provides a simple and flexible way to evaluate the estimator accuracy, through a single bootstrap. The present work generalizes former results of Deheuvels and Derzko [4], given in the setup of density estimation in $\mathbb{R}$. (English) |
Keyword:
|
nonparametric functional estimation |
Keyword:
|
density estimation |
Keyword:
|
regression estimation |
Keyword:
|
bootstrap |
Keyword:
|
resampling methods |
Keyword:
|
confidence regions |
Keyword:
|
empirical processes |
MSC:
|
62G05 |
MSC:
|
62G08 |
MSC:
|
62G09 |
MSC:
|
62G15 |
MSC:
|
62G20 |
MSC:
|
62G30 |
idZBL:
|
Zbl 06047590 |
idMR:
|
MR2907846 |
. |
Date available:
|
2011-12-08T09:59:21Z |
Last updated:
|
2013-09-22 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/141729 |
. |
Reference:
|
[1] Akaike, H.: An approximation of the density function.Ann. Inst. Statist. Math. 6 (1954), 127–132. MR 0067412, 10.1007/BF02900741 |
Reference:
|
[2] Bickel, P. J., Rosenblatt, M.: On some global measures of the deviations of density functions estimates.Ann. Statist. 1 (1973), 1071–1095. MR 0348906, 10.1214/aos/1176342558 |
Reference:
|
[3] Claeskens, G., Keilegom, I. van: Bootstrap confidence bands for regression curves and their derivatives.Ann. Statist. 31 (2003), 1852–1884. MR 2036392, 10.1214/aos/1074290329 |
Reference:
|
[4] Deheuvels, P., Derzko, G.: Asymptotic certainty bands for kernel density estimators based upon a bootstrap resampling scheme.In: Statistical Models and Methods for Biomedical and Technical systems, Stat. Ind. Technol., Birkhäuser, Boston MA 2008, pp. 171–186. MR 2462913 |
Reference:
|
[5] Deheuvels, P., Mason, D. M.: General asymptotic confidence bands based on kernel-type function estimators.Statist. Infer. Stoch. Processes 7 (2004), 225–277. Zbl 1125.62314, MR 2111291, 10.1023/B:SISP.0000049092.55534.af |
Reference:
|
[6] Dudley, R. M.: Uniform Central Limit Theorems.Cambridge University Press, Cambridge 1999. Zbl 0951.60033, MR 1720712 |
Reference:
|
[7] Efron, B.: Bootstrap methods: Another look at the jackknife.Ann. Statist. 7 (1979), 1–26. Zbl 0406.62024, MR 0515681, 10.1214/aos/1176344552 |
Reference:
|
[8] Einmahl, U., Mason, D. M.: Uniform in bandwidth consistency of kernel-type function estimators.Ann. Statist. 33 (2005), 1380–1403. Zbl 1079.62040, MR 2195639, 10.1214/009053605000000129 |
Reference:
|
[9] Giné, E., Koltchinskii, V., Sakhanenko, L.: Kernel density estimators: convergence in distribution for weighted sup-norms.Probab. Theory Related Fields 130 (2004), 167–198. Zbl 1048.62041, MR 2093761, 10.1007/s00440-004-0339-x |
Reference:
|
[10] Giné, E., Mason, D. M.: On local $U$-statistic processes and the estimation of densities of functions of several sample variables.Ann. Statist. 35 (2007), 1105–1145. Zbl 1175.60017, MR 2341700, 10.1214/009053607000000154 |
Reference:
|
[11] Hall, P.: The Bootstrap and Edgeworth Expansion.Springer, New York 1992. Zbl 0829.62021, MR 1145237 |
Reference:
|
[12] Härdle, W., Marron, J. S.: Bootstrap simultaneous error bars for nonparametric regression.Ann. Statist. 19 (1991), 778–796. MR 1105844, 10.1214/aos/1176348120 |
Reference:
|
[13] Härdle, W., Bowman, A. W.: Bootstrapping in nonparametric regression: Local adaptative smoothing and confidence bands.J. Amer. Statist. Assoc. 83 (1988), 102–110. MR 0941002 |
Reference:
|
[14] Li, G., Datta, S.: A bootstrap approach to nonparametric regression for right censored data.Ann. Inst. Statist. Math. 53 (2001), 708–729. Zbl 1003.62036, MR 1879606, 10.1023/A:1014644700806 |
Reference:
|
[15] Mason, D. M., Newton, M. A.: A rank statistics approach to the consistency of a general bootstrap.Ann. Statist. 20 (1992), 1611–1624. Zbl 0777.62045, MR 1186268, 10.1214/aos/1176348787 |
Reference:
|
[16] Nadaraya, E. A.: On estimating regression.Theor. Probab. Appl. 9 (1964), 141–142. Zbl 0136.40902, 10.1137/1109020 |
Reference:
|
[17] Nolan, D., Pollard, D.: $U$-processes: Rates of convergence.Ann. Statist. 15 (1987), 780–799. Zbl 0624.60048, MR 0888439, 10.1214/aos/1176350374 |
Reference:
|
[18] Parzen, E.: On the estimation of probability density and mode.Ann. Math. Statist. 33 (1962), 1065–1076. MR 0143282, 10.1214/aoms/1177704472 |
Reference:
|
[19] Pollard, D.: Convergence of Stochastic Processes.Springer, New York 1984. Zbl 0544.60045, MR 0762984 |
Reference:
|
[20] Rosenblatt, M.: Remarks on some nonparametric estimates of a density function.Ann. Math. Statist. 27 (1956), 832–837. Zbl 0073.14602, MR 0079873, 10.1214/aoms/1177728190 |
Reference:
|
[21] Vaart, A. W. van der, Wellner, J. A.: Weak Convergence and Empirical Processes with Aplications to Statistics.Springer, New York 1996. MR 1385671 |
Reference:
|
[22] Watson, G. S.: Smooth regression analysis.Sankhyā A 26 (1964), 359–372. Zbl 0137.13002, MR 0185765 |
. |