Previous |  Up |  Next

Article

Title: Detection of transient change in mean – a linear behavior inside epidemic interval (English)
Author: Jarušková, Daniela
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 47
Issue: 6
Year: 2011
Pages: 866-879
Summary lang: English
.
Category: math
.
Summary: A procedure for testing occurrance of a transient change in mean of a sequence is suggested where inside an epidemic interval the mean is a linear function of time points. Asymptotic behavior of considered trimmed maximum-type test statistics is presented. Approximate critical values are obtained using an approximation of exceedance probabilities over a high level by Gaussian fields with a locally stationary structure. (English)
Keyword: detection of transient change
Keyword: trimmed maximum-type test statistic
Keyword: extremes of Gaussian fields
MSC: 60G60
MSC: 60G70
MSC: 62F05
idZBL: Zbl 06047591
idMR: MR2907847
.
Date available: 2011-12-08T10:00:22Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/141730
.
Reference: [1] Antoch, J., Hušková, M.: Tests and estimators for epidemic alternatives.Tatra Mountains Math. Publ. 7 (1996), 311–329. MR 1408487
Reference: [2] Bai, J., Perron, P.: Estimating and testing linear models with multiple structural changes.Econometrica 66 (1998), 47–78. Zbl 1056.62523, MR 1616121, 10.2307/2998540
Reference: [3] Bickel, P. J., Wichura, M. J.: Covergence criteria for multiparameter stochastic processes and some applications.Ann. Math. Statist. 42 (1971), 1656–1670. MR 0383482, 10.1214/aoms/1177693164
Reference: [4] Chan, H. P., Lai, T. L.: Maxima of asymptotically Gaussian random fields and moderate deviation approximations to boundary crossing probabilities of sums of random variables with multidimensional indices.Ann. Probab. 34 (2006), 80–121. Zbl 1106.60022, MR 2206343, 10.1214/009117905000000378
Reference: [5] Csörgő, M., Horváth, L.: Limit Theorems in Change Point Analysis.J. Wiley, New York 1997. MR 2743035
Reference: [6] Feder, P. I.: On asymptotic distribution theory in segmented regression problems – identified case.Ann. Statist. 3 (1975), 49–83. Zbl 0324.62014, MR 0378267, 10.1214/aos/1176342999
Reference: [7] Hušková, M.: Estimators for epidemic alternatives.Comment. Math. Univ. Carolinae 36 (1995), 279–291. MR 1357530
Reference: [8] Jarušková, D., Piterbarg, V. I.: Log-likelihood ratio test for detecting transient change.Statist. Probab. Lett. 81 (2011), 552–559. Zbl 1209.62141, MR 2772911, 10.1016/j.spl.2011.01.006
Reference: [9] Kabluchko, Z.: Extreme-value analysis of standardized Gaussian increaments.Not published preprint. ArXiv:0706.1849v3[math.PR] (2008).
Reference: [10] Levin, B., Kline, J.: The cusum test of homogeneity with an application to spontaneous abortion epidemiology.Statist. in Medicine 4 (1985), 469–488. 10.1002/sim.4780040408
Reference: [11] Loader, C. R.: Large – deviation approximations to the distribution of scan statistics.Adv. Appl. Prob. 23 (1991), 751–771. Zbl 0741.60036, MR 1133726, 10.2307/1427674
Reference: [12] Piterbarg, V. I.: Asymptotic methods in the theory of Gaussian processes and fields. Translations of Mathematical Monographs, vol. 148. Amer. Math. Soc. (1996), Providence. Zbl 0841.60024, MR 1361884
Reference: [13] Siegmund, D.: Approximate tail probabilities for the maxima of some random fields.Ann. Probab. 16 (1988), 487–501. Zbl 0646.60032, MR 0929059, 10.1214/aop/1176991769
Reference: [14] Siegmund, D., Venkatranan, E. S.: Using the generalized likelihood ratio statistic for sequential detection of change-point.Ann. Statist. 23 (1995), 255–271. MR 1331667, 10.1214/aos/1176324466
Reference: [15] Siegmund, D., Yakir, B.: Tail probabilities for the null distribution of scanning statistics.Bernoulli 6 (2000), 191–213. Zbl 0976.62048, MR 1748719, 10.2307/3318574
.

Files

Files Size Format View
Kybernetika_47-2011-6_5.pdf 303.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo