Title:
|
Detection of transient change in mean – a linear behavior inside epidemic interval (English) |
Author:
|
Jarušková, Daniela |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 |
Volume:
|
47 |
Issue:
|
6 |
Year:
|
2011 |
Pages:
|
866-879 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
A procedure for testing occurrance of a transient change in mean of a sequence is suggested where inside an epidemic interval the mean is a linear function of time points. Asymptotic behavior of considered trimmed maximum-type test statistics is presented. Approximate critical values are obtained using an approximation of exceedance probabilities over a high level by Gaussian fields with a locally stationary structure. (English) |
Keyword:
|
detection of transient change |
Keyword:
|
trimmed maximum-type test statistic |
Keyword:
|
extremes of Gaussian fields |
MSC:
|
60G60 |
MSC:
|
60G70 |
MSC:
|
62F05 |
idZBL:
|
Zbl 06047591 |
idMR:
|
MR2907847 |
. |
Date available:
|
2011-12-08T10:00:22Z |
Last updated:
|
2013-09-22 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/141730 |
. |
Reference:
|
[1] Antoch, J., Hušková, M.: Tests and estimators for epidemic alternatives.Tatra Mountains Math. Publ. 7 (1996), 311–329. MR 1408487 |
Reference:
|
[2] Bai, J., Perron, P.: Estimating and testing linear models with multiple structural changes.Econometrica 66 (1998), 47–78. Zbl 1056.62523, MR 1616121, 10.2307/2998540 |
Reference:
|
[3] Bickel, P. J., Wichura, M. J.: Covergence criteria for multiparameter stochastic processes and some applications.Ann. Math. Statist. 42 (1971), 1656–1670. MR 0383482, 10.1214/aoms/1177693164 |
Reference:
|
[4] Chan, H. P., Lai, T. L.: Maxima of asymptotically Gaussian random fields and moderate deviation approximations to boundary crossing probabilities of sums of random variables with multidimensional indices.Ann. Probab. 34 (2006), 80–121. Zbl 1106.60022, MR 2206343, 10.1214/009117905000000378 |
Reference:
|
[5] Csörgő, M., Horváth, L.: Limit Theorems in Change Point Analysis.J. Wiley, New York 1997. MR 2743035 |
Reference:
|
[6] Feder, P. I.: On asymptotic distribution theory in segmented regression problems – identified case.Ann. Statist. 3 (1975), 49–83. Zbl 0324.62014, MR 0378267, 10.1214/aos/1176342999 |
Reference:
|
[7] Hušková, M.: Estimators for epidemic alternatives.Comment. Math. Univ. Carolinae 36 (1995), 279–291. MR 1357530 |
Reference:
|
[8] Jarušková, D., Piterbarg, V. I.: Log-likelihood ratio test for detecting transient change.Statist. Probab. Lett. 81 (2011), 552–559. Zbl 1209.62141, MR 2772911, 10.1016/j.spl.2011.01.006 |
Reference:
|
[9] Kabluchko, Z.: Extreme-value analysis of standardized Gaussian increaments.Not published preprint. ArXiv:0706.1849v3[math.PR] (2008). |
Reference:
|
[10] Levin, B., Kline, J.: The cusum test of homogeneity with an application to spontaneous abortion epidemiology.Statist. in Medicine 4 (1985), 469–488. 10.1002/sim.4780040408 |
Reference:
|
[11] Loader, C. R.: Large – deviation approximations to the distribution of scan statistics.Adv. Appl. Prob. 23 (1991), 751–771. Zbl 0741.60036, MR 1133726, 10.2307/1427674 |
Reference:
|
[12] Piterbarg, V. I.: Asymptotic methods in the theory of Gaussian processes and fields. Translations of Mathematical Monographs, vol. 148. Amer. Math. Soc. (1996), Providence. Zbl 0841.60024, MR 1361884 |
Reference:
|
[13] Siegmund, D.: Approximate tail probabilities for the maxima of some random fields.Ann. Probab. 16 (1988), 487–501. Zbl 0646.60032, MR 0929059, 10.1214/aop/1176991769 |
Reference:
|
[14] Siegmund, D., Venkatranan, E. S.: Using the generalized likelihood ratio statistic for sequential detection of change-point.Ann. Statist. 23 (1995), 255–271. MR 1331667, 10.1214/aos/1176324466 |
Reference:
|
[15] Siegmund, D., Yakir, B.: Tail probabilities for the null distribution of scanning statistics.Bernoulli 6 (2000), 191–213. Zbl 0976.62048, MR 1748719, 10.2307/3318574 |
. |