Previous |  Up |  Next

Article

Title: A-optimal biased spring balance weighing design (English)
Author: Graczyk, Małgorzata
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 47
Issue: 6
Year: 2011
Pages: 893-901
Summary lang: English
.
Category: math
.
Summary: In this paper we study the problem of estimation of individual measurements of objects in a biased spring balance weighing design under assumption that the errors are uncorrelated and they have different variances. The lower bound for the variance of each of the estimated measurements for this design and the necessary and sufficient conditions for this lower bound to be attained are given. The incidence matrices of the balanced incomplete block designs are used for construction of the A-optimal biased spring balance weighing design. (English)
Keyword: A-optimal design
Keyword: biased design
Keyword: spring balance weighing design
MSC: 62K05
MSC: 62K10
idZBL: Zbl 06047593
idMR: MR2907849
.
Date available: 2011-12-08T10:02:06Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/141732
.
Reference: [1] Banerjee, K. S.: Weighing Designs for Chemistry, Medicine, Economics, Operations Research, Statistics.Marcel Dekker Inc., New York 1975. Zbl 0334.62030, MR 0458751
Reference: [2] Ceranka, B., Katulska, K.: Optimum spring balance weighing designs with non-homogeneity of the variances of errors.J. Statist. Plann. Inference 30 (1992), 185–193. MR 1157759, 10.1016/0378-3758(92)90080-C
Reference: [3] Ceranka, B., Katulska, K.: A-optimal chemical balance weighing designs with diagonal covariance matrix of errors.In: MODA 6 (A. C. Atkinson, P. Hackl, W. G. Muller, eds.), Physica, Heidelberg 2001, pp. 29–36. MR 1865143
Reference: [4] Ceranka, B., Graczyk, M., Katulska, K.: A-optimal chemical balance weighing design with nonhomogeneity of variances of errors.Statist. Probab. Lett. 76 (2006), 653–665. Zbl 1090.62074, MR 2234783, 10.1016/j.spl.2005.09.012
Reference: [5] Pukelsheim, F.: Optimal Design of Experiment.John Wiley and Sons, New York 1993. MR 1211416
Reference: [6] Raghavarao, D.: Constructions and Combinatorial Problems in Designs of Experiments.John Wiley Inc., New York 1971. MR 0365935
Reference: [7] Shah, K. R., Sinha, B. K. : Theory of Optimal Designs.Springer-Verlag, Berlin 1989. Zbl 0688.62043, MR 1016151
.

Files

Files Size Format View
Kybernetika_47-2011-6_7.pdf 249.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo