Title:
|
Robustness optimal spring balance weighing designs for estimation total weight (English) |
Author:
|
Ceranka, Bronisław |
Author:
|
Graczyk, Małgorzata |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 |
Volume:
|
47 |
Issue:
|
6 |
Year:
|
2011 |
Pages:
|
902-908 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper we develop the theory of spring balance weighing designs with non-positive correlated errors for that the lower bound of the variance of estimated total weight is attained. (English) |
Keyword:
|
robustness |
Keyword:
|
spring balance weighing design |
Keyword:
|
total weight |
MSC:
|
62K05 |
MSC:
|
62K10 |
idZBL:
|
Zbl 06047594 |
idMR:
|
MR2907850 |
. |
Date available:
|
2011-12-08T10:02:59Z |
Last updated:
|
2013-09-22 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/141733 |
. |
Reference:
|
[1] Banerjee, K. S.: Weighing Designs for Chemistry, Medicine, Economics, Operations Research, Statistics.Marcel Dekker Inc., New York 1975. Zbl 0334.62030, MR 0458751 |
Reference:
|
[2] Ceranka, B., Katulska, K.: Optimum singular spring balance weighing designs with non-homogeneity of the variances of errors for estimating the total weight.Austral. J. Statist. 28 (1986), 200–205. Zbl 0657.62082, MR 0860464, 10.1111/j.1467-842X.1986.tb00599.x |
Reference:
|
[3] Clatworthy, W. H.: Tables of two-associate-class partially balanced designs.NBS Appl. Math. 63 (1973). Zbl 0289.05017, MR 0415952 |
Reference:
|
[4] Dey, A., Gupta, S. C.: Singular weighing designs and the estimation of total weight.Comm. Statist. Theory Methods 7 (1977), 289–295. MR 0436489 |
Reference:
|
[5] Katulska, K.: On the estimation of total weight in singular spring balance weighing designs under the covariance matrix of errors $\sigma ^2{\bf G}$.Austral. J. Statist. 31 (1989), 277–286. Zbl 0707.62163, MR 1039415, 10.1111/j.1467-842X.1989.tb00397.x |
Reference:
|
[6] Krzyśko, M., Skorzybut, M.: Dysciminant analysis of multivariate repeated measures data with Kronecker product structured covariance matrices.Statist. Papers 50 (2009), 817–835. MR 2551353, 10.1007/s00362-009-0259-z |
Reference:
|
[7] Masaro, J., Wong, C. S.: Robustness of A-optimal designs.Linear Algebra Appl. 429 (2008), 1392–1408. Zbl 1145.62053, MR 2444331, 10.1016/j.laa.2008.02.017 |
Reference:
|
[8] Pukelsheim, F.: Optimal Design of Experiment.John Wiley and Sons, New York 1993. MR 1211416 |
Reference:
|
[9] Raghavarao, D.: Constructions and Combinatorial Problems in designs of Experiments.John Wiley Inc., New York 1971. MR 0365935 |
Reference:
|
[10] Raghavarao, D., Padgett, L. V.: Block Designs, Analysis, Combinatorics and Applications.Series of Applied Mathematics 17, Word Scientific Publishing Co. Pte. Ltd., 2005 Zbl 1102.62080, MR 2187913 |
Reference:
|
[11] Sinha, B. K.: Optimum spring balance weighing designs.In: Proc. All India Convention on Quality and Reliability. Indian Inst. Tech., Kharagpur 1972. |
Reference:
|
[12] Shah, K. R., Sinha, B. K.: Theory of Optimal Designs.Springer-Verlag, Berlin 1989. Zbl 0688.62043, MR 1016151 |
. |