Previous |  Up |  Next

Article

Title: A consumption-investment problem modelled as a discounted Markov decision process (English)
Author: Cruz-Suárez, Hugo
Author: Montes-de-Oca, Raúl
Author: Zacarías, Gabriel
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 47
Issue: 6
Year: 2011
Pages: 909-929
Summary lang: English
.
Category: math
.
Summary: In this paper a problem of consumption and investment is presented as a model of a discounted Markov decision process with discrete-time. In this problem, it is assumed that the wealth is affected by a production function. This assumption gives the investor a chance to increase his wealth before the investment. For the solution of the problem there is established a suitable version of the Euler Equation (EE) which characterizes its optimal policy completely, that is, there are provided conditions which guarantee that a policy is optimal for the problem if and only if it satisfies the EE. The problem is exemplified in two particular cases: for a logarithmic utility and for a Cobb-Douglas utility. In both cases explicit formulas for the optimal policy and the optimal value function are supplied. (English)
Keyword: discounted Markov decision processes
Keyword: differentiable value function
Keyword: differentiable optimal policy
Keyword: stochastic Euler equation
Keyword: consumption and investment problems
MSC: 62A10
MSC: 93E12
idZBL: Zbl 1241.93053
idMR: MR2907851
.
Date available: 2011-12-08T10:04:21Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/141734
.
Reference: [1] Aliprantis, C. D., Burkinshaw, O.: Principles of Real Analysis. Academic Press, San Diego 1998. Zbl 1006.28001, MR 1669668
Reference: [2] Angelatos, G. M.: Uninsured idiosyncratic investment risk and aggregate saving. Rev. Econom. Dynam. 10 (2007), 1–30. 10.1016/j.red.2006.11.001
Reference: [3] Arrow, K. J.: A note on uncertainty and discounting in models of economic growth. J. Risk Unc. 38 (2009), 87–94. Zbl 1166.91321, 10.1007/s11166-009-9065-1
Reference: [4] Bertsekas, D. P.: Dynamic Programming: Deterministic and Stochastic Models. Prentice-Hall, Belmont 1987. Zbl 0649.93001, MR 0896902
Reference: [5] Brock, W., Mirman, L.: Optimal economic growth and uncertainty: the discounted case. J. Econom. Theory 4 (1972), 479–513. MR 0449517, 10.1016/0022-0531(72)90135-4
Reference: [6] Cruz-Suárez, D., Montes-de-Oca, R., Salem-Silva, F.: Conditions for the uniqueness of optimal policies of discounted Markov decision processes. Math. Meth. Oper. Res. 60 (2004), 415–436. Zbl 1104.90053, MR 2106092, 10.1007/s001860400372
Reference: [7] Cruz-Suárez, H., Montes-de-Oca, R.: Discounted Markov control processes induced by deterministic systems. Kybernetika 42 (2006), 647–664. Zbl 1249.90312, MR 2296506
Reference: [8] Cruz-Suárez, H., Montes-de-Oca, R.: An envelope theorem and some applications to discounted Markov decision processes. Math. Meth. Oper. Res. 67 (2008), 299–321. Zbl 1149.90171, MR 2390061, 10.1007/s00186-007-0155-z
Reference: [9] Dynkin, E. B., Yushkevich, A. A.: Controlled Markov Processes. Springer-Verlag, New York 1980. MR 0554083
Reference: [10] Epstein, L., Zin, S.: Substitution, risk aversion, and the temporal behaviour of consumption and asset returns I: Theoretical framework. Econometrica 57 (1989), 937–969. MR 1006550, 10.2307/1913778
Reference: [11] Fuente, A. De la: Mathematical Methods and Models for Economists. Cambridge University Press, Cambridge 2000. Zbl 0943.91001, MR 1735968
Reference: [12] Gurkaynak, R. S.: Econometric tests of asset price bubbles: taking stock. J. Econom. Surveys 22 (2008), 166–186. 10.1111/j.1467-6419.2007.00530.x
Reference: [13] Heer, B., Maussner, A.: Dynamic General Equilibrium Modelling: Computational Method and Application. Second edition, Springer-Verlag, Berlin 2005. MR 2378171
Reference: [14] Hernández-Lerma, O., Lasserre, J. B.: Discrete-Time Markov Control Processes: Basic Optimality Criteria. Springer-Verlag, New York 1996. MR 1363487
Reference: [15] Hernández-Lerma, O., Lasserre, J. B.: Value iteration and rolling plans for Markov control processes with unbounded rewards. J. Math. Anal. Appl. 177 (1993), 38–55. MR 1224804, 10.1006/jmaa.1993.1242
Reference: [16] Jaskiewics, A., Nowak, A. S.: Discounted dynamic programming with unbounded returns: application to economic models. J. Math. Anal. Appl. 378 (2011), 450–462. MR 2773257, 10.1016/j.jmaa.2010.08.073
Reference: [17] Korn, R., Kraft, H.: A stochastic control approach to portfolio problems with stochastic interest rates. SIAM J. Control Optim. 40 (2001), 1250–1269. Zbl 1020.93029, MR 1882732, 10.1137/S0363012900377791
Reference: [18] Kamihigashi, T.: Stochastic optimal growth with bounded or unbounded utility and bounded or unbounded shocks. J. Math. Econom. 43 (2007), 477–500. MR 2317118, 10.1016/j.jmateco.2006.05.007
Reference: [19] Levhari, D., Srinivasan, T. N.: Optimal savings under uncertainty. Rev. Econom. Stud. 36 (1969), 153–163. 10.2307/2296834
Reference: [20] Mirman, L., Zilcha, I.: On optimal growth under uncertainty. J. Econom. Theory 2 (1975), 329–339. Zbl 0362.90024, MR 0414045, 10.1016/0022-0531(75)90022-8
Reference: [21] Ramsey, F. P.: A Mathematical theory of saving. Econom. J. 38 (1928), 543–559.
Reference: [22] Stokey, N., Lucas, R., Prescott, E.: Recursive Methods in Economic Dynamics. Harvard University Press, Cambridge 1989. MR 1105087
.

Files

Files Size Format View
Kybernetika_47-2011-6_9.pdf 344.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo