Previous |  Up |  Next

Article

Title: A continuous operator extending fuzzy ultrametrics (English)
Author: Stasyuk, I.
Author: Tymchatyn, E. D.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 52
Issue: 4
Year: 2011
Pages: 611-622
Summary lang: English
.
Category: math
.
Summary: We consider the problem of simultaneous extension of fuzzy ultrametrics defined on closed subsets of a complete fuzzy ultrametric space. We construct an extension operator that preserves the operation of pointwise minimum of fuzzy ultrametrics with common domain and an operation which is an analogue of multiplication by a constant defined for fuzzy ultrametrics. We prove that the restriction of the extension operator onto the set of continuous, partial fuzzy ultrametrics is continuous with respect to the Hausdorff metric topology. (English)
Keyword: fuzzy ultrametric
Keyword: continuous extension operator
Keyword: Hausdorff metric
MSC: 54A40
MSC: 54C20
MSC: 54E70
idZBL: Zbl 1249.54018
idMR: MR2864002
.
Date available: 2011-12-16T13:40:58Z
Last updated: 2015-02-11
Stable URL: http://hdl.handle.net/10338.dmlcz/141741
.
Reference: [1] Banakh T.: $\rm AE(0)$–spaces and regular operators extending (averaging) pseudometrics.Bull. Polish Acad. Sci. Math. 42 (1994), no. 3, 197–206. MR 1811849
Reference: [2] Bessaga C.: On linear operators and functors extending pseudometrics.Fund. Math. 142 (1993), no. 2, 101-122. Zbl 0847.54033, MR 1211761
Reference: [3] Beer G.: Topologies on Closed and Closed Convex Sets.Kluwer Academic, Dordrecht, 1993. Zbl 0792.54008, MR 1269778
Reference: [4] George A., Veeramani P.: On some results of analysis for fuzzy metric spaces.Fuzzy Sets and Systems 90 (1997), 365–368. Zbl 0917.54010, MR 1477836
Reference: [5] Gregori V., Morillas S., Sapena A.: On a class of completable fuzzy metric spaces.Fuzzy Sets and Systems 161 (2010), 2193–2205. Zbl 1201.54011, MR 2652720
Reference: [6] de Groot J.: Non-archimedean metrics in topology.Proc. Amer. Math. Soc. 7 (1956), 948–953. Zbl 0072.40201, MR 0080905, 10.1090/S0002-9939-1956-0080905-8
Reference: [7] Hausdorff F.: Erweiterung einer Homöomorphie.Fund. Math. 16 (1930), 353–360.
Reference: [8] Künzi H.P., Shapiro L.B.: On simultaneous extension of continuous partial functions.Proc. Amer. Math. Soc. 125 (1997), 1853–1859. MR 1415348, 10.1090/S0002-9939-97-04011-2
Reference: [9] Mihe\c t D.: Fuzzy $\psi$-contractive mappings in non-Archimedean fuzzy metric spaces.Fuzzy Sets and Systems 159 (2008), no. 6, 739–744. MR 2410532, 10.1016/j.fss.2007.07.006
Reference: [10] Narici L., Beckenstein E.: Topological vector spaces.Pure and Applied Mathematics, 95, Marcel Dekker, New York-Basel, 1985. Zbl 1219.46001, MR 0812056
Reference: [11] Pikhurko O.: Extending metrics in compact pairs.Mat. Stud. 3 (1994), 103–106. Zbl 0927.54029, MR 1692801
Reference: [12] Repovš D., Savchenko A., Zarichnyi M.: Fuzzy Prokhorov metric on the set of probability measures.Fuzzy Sets and Systems 175 (2011), 96–104. MR 2803416
Reference: [13] Savchenko A.: Extension of fuzzy metrics.Carpathian Mathematical Publications 2 (2010), no. 2, 111–115 (in Ukrainian). Zbl 1224.54020
Reference: [14] Savchenko A., Zarichnyi M.: Fuzzy ultrametrics on the set of probability measures.Topology 48 (2009), 130–136. Zbl 1191.54008, MR 2596207, 10.1016/j.top.2009.11.011
Reference: [15] Stasyuk I., Tymchatyn E.D.: A continuous operator extending ultrametrics.Comment. Math. Univ. Carolin. 50 (2009), no. 1, 141–151. Zbl 1212.54091, MR 2562811
Reference: [16] Stasyuk I., Tymchatyn E.D.: On continuous linear operators extending metrics.submitted to Proc. Amer. Math. Soc.
Reference: [17] Tymchatyn E.D., Zarichnyi M.: On simultaneous linear extensions of partial (pseudo) metrics.Proc. Amer. Math. Soc. 132 (2004), 2799–2807. Zbl 1050.54011, MR 2054807, 10.1090/S0002-9939-04-07413-1
Reference: [18] Tymchatyn E.D., Zarichnyi M.: A note on operators extending partial ultrametrics.Comment. Math. Univ. Carolin. 46 (2005), no. 3, 515–524. Zbl 1121.54045, MR 2174529
Reference: [19] Zarichnyi M.: Regular linear operators extending metrics: a short proof.Bull. Polish Acad. Sci. Math. 44 (1996), no. 3, 267–269. Zbl 0866.54017, MR 1419399
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_52-2011-4_11.pdf 476.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo