Previous |  Up |  Next

Article

Title: The product of two ordinals is hereditarily dually discrete (English)
Author: Gaspar-Arreola, M.Á.
Author: Hernández-Hernández, F.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 53
Issue: 1
Year: 2012
Pages: 99-104
Summary lang: English
.
Category: math
.
Summary: In Dually discrete spaces, Topology Appl. 155 (2008), 1420--1425, Alas et. al. proved that ordinals are hereditarily dually discrete and asked whether the product of two ordinals has the same property. In Products of certain dually discrete spaces, Topology Appl. 156 (2009), 2832--2837, Peng proved a number of partial results and left open the question of whether the product of two stationary subsets of $\omega_1$ is dually discrete. We answer the first question affirmatively and as a consequence also give a positive answer to the second. (English)
Keyword: dually discrete spaces
Keyword: stationary subsets
Keyword: ordinal spaces
MSC: 54D99
MSC: 54F05
idZBL: Zbl 1249.54051
idMR: MR2880913
.
Date available: 2012-02-07T10:26:19Z
Last updated: 2014-04-07
Stable URL: http://hdl.handle.net/10338.dmlcz/141828
.
Reference: [1] Alas O.T., Junqueira L.R., Wilson R.G.: Dually discrete spaces.Topology Appl. 155 (2008), 1420–1425. Zbl 1169.54010, MR 2427413, 10.1016/j.topol.2008.04.003
Reference: [2] Buzyakova R.Z., Tkachuk V.V., Wilson R.G.: A quest for nice kernels of neighbourhood assignments.Comment. Math. Univ. Carolin. 48 (2007), no. 4, 689–697. Zbl 1199.54141, MR 2375169
Reference: [3] van Douwen E.K., Pfeffer W.F.: Some properties of the Sorgenfrey line and related spaces.Pacific J. Math. 81 (1979), no. 2, 371–377. Zbl 0409.54011, MR 0547605, 10.2140/pjm.1979.81.371
Reference: [4] van Mill J., Tkachuk V.V., Wilson R.G.: Classes defined by stars and neighborhood assignments.Topology Appl. 154 (2007), 2127–2134. MR 2324924, 10.1016/j.topol.2006.03.029
Reference: [5] Peng L.X.: Dual properties of subspaces in product of ordinals.Topology Appl. 157 (2010), 2297–2303. MR 2670506, 10.1016/j.topol.2010.06.010
Reference: [6] Peng L.X.: Finite unions of weak $\bar{\theta}$-refinable spaces and product of ordinals.Topology Appl. 156 (2009), 1679–1683. MR 2521704, 10.1016/j.topol.2009.01.013
Reference: [7] Peng L.X.: Products of certain dually discrete spaces.Topology Appl. 156 (2009), 2832–2837. Zbl 1180.54029, MR 2556039, 10.1016/j.topol.2009.08.018
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_53-2012-1_7.pdf 440.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo