Previous |  Up |  Next

Article

Title: On special partitions of Dedekind- and Russell-sets (English)
Author: Herrlich, Horst
Author: Howard, Paul
Author: Tachtsis, Eleftherios
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 53
Issue: 1
Year: 2012
Pages: 105-122
Summary lang: English
.
Category: math
.
Summary: A Russell set is a set which can be written as the union of a countable pairwise disjoint set of pairs no infinite subset of which has a choice function and a Russell cardinal is the cardinal number of a Russell set. We show that if a Russell cardinal $a$ has a ternary partition (see Section 1, Definition 2) then the Russell cardinal $a+2$ fails to have such a partition. In fact, we prove that if a ZF-model contains a Russell set, then it contains Russell sets with ternary partitions as well as Russell sets without ternary partitions. We then consider generalizations of this result. (English)
Keyword: Axiom of Choice
Keyword: Dedekind sets
Keyword: Russell sets
Keyword: generalizations of Russell sets
Keyword: odd sized partitions
Keyword: permutation models
MSC: 03E10
MSC: 03E25
MSC: 03E35
MSC: 05A18
idZBL: Zbl 1249.05018
idMR: MR2880914
.
Date available: 2012-02-07T10:27:15Z
Last updated: 2014-04-07
Stable URL: http://hdl.handle.net/10338.dmlcz/141829
.
Reference: [1] Blair D., Blass A., Howard P.: Divisibility of Dedekind finite sets.J. Math. Log. 5 (2005), no. 1, 49–85. Zbl 1095.03043, MR 2151583, 10.1142/S0219061305000389
Reference: [2] Fraleigh J.B.: A First Course in Abstract Algebra.Addison-Wesley Publ. Co., Reading, Mass.-London-Don Mills, Ont., 1967. Zbl 1060.00001, MR 0225619
Reference: [3] Herrlich H.: Axiom of Choice.Springer Lecture Notes in Mathematics, 1876, Springer, New York, 2006. Zbl 1102.03049, MR 2243715
Reference: [4] Herrlich H.: Binary partitions in the absence of choice or rearranging Russell's socks.Quaest. Math. 30 (2007), no. 4, 465–470. Zbl 1138.05003, MR 2368564, 10.2989/16073600709486213
Reference: [5] Herrlich H., Howard P., Tachtsis E.: The cardinal inequality $\alpha^2< 2^\alpha $.Quaest. Math. 34 (2011), no. 1, 35–66. MR 2810887, 10.2989/16073606.2011.570293
Reference: [6] Herrlich H., Keremedis K., Tachtsis E.: On Russell and anti Russell–cardinals.Quaest. Math. 33 (2010), 1–9. MR 2755503, 10.2989/16073601003718222
Reference: [7] Herrlich H., Tachtsis E.: On the number of Russell's socks or $2+2+2+\cdots=$?.Comment. Math. Univ. Carolin. 47 (2006), 707–717. MR 2337424
Reference: [8] Herrlich H., Tachtsis E.: Odd-sized partitions of Russell-sets.Math. Logic Quart. 56 (2010), no. 2, 185–190. Zbl 1201.03040, MR 2650236, 10.1002/malq.200810049
Reference: [9] Howard P., Rubin J.E.: Consequences of the Axiom of Choice.Mathematical Surveys and Monographs, 59, American Mathematical Society, Providence, RI, 1998; (http://consequences.emich.edu/conseq.htm). Zbl 0947.03001, MR 1637107
Reference: [10] Jech T.J.: The Axiom of Choice.Studies in Logic and the Foundations of Mathematics, 75, North-Holland, Amsterdam, 1973; Reprint: Dover Publications, Inc., New York, 2008. Zbl 0259.02052, MR 0396271
Reference: [11] Tarski A.: Cancellation laws in the arithmetic of cardinals.Fund. Math. 36 (1949), 77-92. Zbl 0039.04804, MR 0032710
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_53-2012-1_8.pdf 616.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo