[1] Anh, V. V., Grecksch, W. A.:
A fractional stochastic evolution equation driven by fractional Brownian motion. Monte Carlo Methods Appl. 9 (2003), 189-199.
MR 2009368 |
Zbl 1049.60056
[3] Biagini, F., Hu, Y., Øksendal, B., Zhang, T.:
Stochastic Calculus for Fractional Brownian Motion and Applications. Probability and its Applications. Springer London (2008).
MR 2387368
[5] Brze'zniak, Z., Neerven, J. M. A. M. van:
Space-time regularity for linear stochastic evolution equations driven by spatially homogeneous noise. J. Math. Kyoto Univ. 43 (2003), 261-303.
DOI 10.1215/kjm/1250283728 |
MR 2051026
[8] Carmona, R., Fouque, J.-P., Vestal, D.:
Interacting particle systems for the computation of rare credit portfolio losses. Finance Stoch. 13 (2009), 613-633.
DOI 10.1007/s00780-009-0098-8 |
MR 2519846
[9] Prato, G. Da, Zabczyk, J.:
Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and its Applications, Vol. 44. Cambridge University Press Cambridge (2008).
MR 1207136
[11] Dettweiler, J., Weis, L., Neerven, J. M. A. M. van:
Space-time regularity of solutions of the parabolic stochastic Cauchy problem. Stochastic Anal. Appl. 24 (2006), 843-869.
DOI 10.1080/07362990600753577 |
MR 2241096
[13] Fernique, X.:
Intégrabilité des vecteurs gaussiens. C. R. Acad. Sci. Paris, Sér. A 270 (1970), 1698-1699 French.
MR 0266263 |
Zbl 0206.19002
[15] Goldys, B., Neerven, J. M. A. M. van:
Transition semigroups of Banach space valued Ornstein-Uhlenbeck processes. Acta Appl. Math. 76 (2003), 283-330 Revised version: arXiv:math/0606785.
DOI 10.1023/A:1023261101091 |
MR 1976297
[21] Hu, Y., Øksendal, B., Zhang, T.:
General fractional multiparameter white noise theory and stochastic partial differential equations. Commun. Partial. Diff. Equations 29 (2004), 1-23.
DOI 10.1081/PDE-120028841 |
MR 2038141
[24] Kalton, N. J., Neerven, J. M. A. M. van, Veraar, M. C., Weis, L.:
Embedding vector-valued Besov spaces into spaces of gamma-radonifying operators. Math. Nachr. 281 (2008), 238-252.
DOI 10.1002/mana.200510598 |
MR 2387363
[25] Kalton, N. J., Weis, L.:
The {$H^\infty$}-calculus and square function estimates. In preparation.
Zbl 1111.47020
[26] Leland, W., Taqqu, M., Willinger, W., Wilson, D.:
On the self-similar nature of ethernet traffic. IEEE/ACM Trans. Networking 2 (1994), 1-15.
DOI 10.1109/90.282603
[27] Mandelbrot, B. B., Ness, J. W. Van:
Fractional Brownian motion, fractional noises, and applications. SIAM Rev. 10 (1968), 422-437.
DOI 10.1137/1010093 |
MR 0242239
[29] Maslowski, B., Schmalfuss, B.:
Random dynamical systems and stationary solutions of differential equations driven by the fractional Brownian motion. Stochastic Anal. Appl. 22 (2004), 1577-1607.
DOI 10.1081/SAP-200029498 |
MR 2095071 |
Zbl 1062.60060
[30] Neerven, J. M. A. M. van:
$\gamma$-radonifying operators---a survey. Proceedings CMA 44 (2010), 1-61.
MR 2655391
[31] Neerven, J. M. A. M. van:
Stochastic Evolution Equations. Lecture Notes of the Internet Seminar 2007/08, OpenCourseWare, TU Delft, http://ocw.tudelft.nl</b>
[33] Neerven, J. M. A. M. van, Veraar, M. C., Weis, L.:
Conditions for stochastic integrability in UMD Banach spaces. Inn: Banach Spaces and their Applications in Analysis: In Honor of Nigel Kalton's 60th Birthday. De Gruyter Proceedings in Mathematics Walter De Gruyter Berlin (2007), 127-146.
MR 2374704
[35] Neerven, J. M. A. M. van, Weis, L.:
Stochastic integration of functions with values in a Banach space. Stud. Math. 166 (2005), 131-170.
DOI 10.4064/sm166-2-2 |
MR 2109586
[36] Nualart, D.:
Fractional Brownian motion: stochastic calculus and applications. In: Proceedings of the International Congress of Mathematicians. Volume III: Invited Lectures, Madrid, Spain, August 22-30, 2006 European Mathematical Society Zürich (2006), 1541-1562.
MR 2275741 |
Zbl 1102.60033
[38] Palmer, T. N., Shutts, G. J., Hagedorn, R., Doblas-Reyes, F. J., Jung, T., Leutbecher, M.:
Representing model uncertainty in weather and climate prediction. Annu. Rev. Earth Planet. Sci. 33 (2005), 163-193.
DOI 10.1146/annurev.earth.33.092203.122552 |
MR 2153320
[39] Palmer, T. N.: A nonlinear dynamical perspective on model error: A proposal for non-local stochastic-dynamic parametrization in weather and climate prediction models. Q. J. Meteorological Soc. 127 (2001) B 279-304.
[40] Pasik-Duncan, B., Duncan, T. E., Maslowski, B.:
Linear stochastic equations in a Hilbert space with a fractional Brownian motion. In: Stochastic Processes, Optimization, and Control Theory: Applications in Financial Engineering, Queueing Networks, and Manufacturing Systems. International Series in Operations Research & Management Science Springer New York (2006), 201-221.
MR 2353483 |
Zbl 1133.60015
[41] Pazy, A.:
Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences, 44. Springer New York (1983).
MR 0710486
[42] Samko, S. G., Kilbas, A. A., Marichev, O. I.:
Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach New York (1993).
MR 1347689 |
Zbl 0818.26003
[43] Triebel, H.:
Interpolation Theory, Function Spaces, Differential Operators. North-Holland Math. Library, vol. 18. North-Holland Amsterdam (1978).
MR 0503903
[46] Willinger, W., Taqqu, M., Leland, W. E., Wilson, D. V.:
Self-similarity in high speed packet traffic: analysis and modeling of Ethernet traffic measurements. Stat. Sci. 10 (1995), 67-85.
DOI 10.1214/ss/1177010131 |
Zbl 1148.90310