[1] Anh, V. V., Grecksch, W. A.: 
A fractional stochastic evolution equation driven by fractional Brownian motion. Monte Carlo Methods Appl. 9 (2003), 189-199. 
MR 2009368 | 
Zbl 1049.60056 
[3] Biagini, F., Hu, Y., Øksendal, B., Zhang, T.: 
Stochastic Calculus for Fractional Brownian Motion and Applications. Probability and its Applications. Springer London (2008). 
MR 2387368 
[5] Brze'zniak, Z., Neerven, J. M. A. M. van: 
Space-time regularity for linear stochastic evolution equations driven by spatially homogeneous noise. J. Math. Kyoto Univ. 43 (2003), 261-303. 
DOI 10.1215/kjm/1250283728 | 
MR 2051026 
[8] Carmona, R., Fouque, J.-P., Vestal, D.: 
Interacting particle systems for the computation of rare credit portfolio losses. Finance Stoch. 13 (2009), 613-633. 
DOI 10.1007/s00780-009-0098-8 | 
MR 2519846 
[9] Prato, G. Da, Zabczyk, J.: 
Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and its Applications, Vol. 44. Cambridge University Press Cambridge (2008). 
MR 1207136 
[11] Dettweiler, J., Weis, L., Neerven, J. M. A. M. van: 
Space-time regularity of solutions of the parabolic stochastic Cauchy problem. Stochastic Anal. Appl. 24 (2006), 843-869. 
DOI 10.1080/07362990600753577 | 
MR 2241096 
[13] Fernique, X.: 
Intégrabilité des vecteurs gaussiens. C. R. Acad. Sci. Paris, Sér. A 270 (1970), 1698-1699 French. 
MR 0266263 | 
Zbl 0206.19002 
[15] Goldys, B., Neerven, J. M. A. M. van: 
Transition semigroups of Banach space valued Ornstein-Uhlenbeck processes. Acta Appl. Math. 76 (2003), 283-330 Revised version: arXiv:math/0606785. 
DOI 10.1023/A:1023261101091 | 
MR 1976297 
[21] Hu, Y., Øksendal, B., Zhang, T.: 
General fractional multiparameter white noise theory and stochastic partial differential equations. Commun. Partial. Diff. Equations 29 (2004), 1-23. 
DOI 10.1081/PDE-120028841 | 
MR 2038141 
[24] Kalton, N. J., Neerven, J. M. A. M. van, Veraar, M. C., Weis, L.: 
Embedding vector-valued Besov spaces into spaces of gamma-radonifying operators. Math. Nachr. 281 (2008), 238-252. 
DOI 10.1002/mana.200510598 | 
MR 2387363 
[25] Kalton, N. J., Weis, L.: 
The {$H^\infty$}-calculus and square function estimates. In preparation. 
Zbl 1111.47020 
[26] Leland, W., Taqqu, M., Willinger, W., Wilson, D.: 
On the self-similar nature of ethernet traffic. IEEE/ACM Trans. Networking 2 (1994), 1-15. 
DOI 10.1109/90.282603 
[27] Mandelbrot, B. B., Ness, J. W. Van: 
Fractional Brownian motion, fractional noises, and applications. SIAM Rev. 10 (1968), 422-437. 
DOI 10.1137/1010093 | 
MR 0242239 
[29] Maslowski, B., Schmalfuss, B.: 
Random dynamical systems and stationary solutions of differential equations driven by the fractional Brownian motion. Stochastic Anal. Appl. 22 (2004), 1577-1607. 
DOI 10.1081/SAP-200029498 | 
MR 2095071 | 
Zbl 1062.60060 
[30] Neerven, J. M. A. M. van: 
$\gamma$-radonifying operators---a survey. Proceedings CMA 44 (2010), 1-61. 
MR 2655391 
[31] Neerven, J. M. A. M. van: 
Stochastic Evolution Equations. Lecture Notes of the Internet Seminar 2007/08, OpenCourseWare, TU Delft,  http://ocw.tudelft.nl</b>  
[33] Neerven, J. M. A. M. van, Veraar, M. C., Weis, L.: 
Conditions for stochastic integrability in UMD Banach spaces. Inn: Banach Spaces and their Applications in Analysis: In Honor of Nigel Kalton's 60th Birthday. De Gruyter Proceedings in Mathematics Walter De Gruyter Berlin (2007), 127-146. 
MR 2374704 
[35] Neerven, J. M. A. M. van, Weis, L.: 
Stochastic integration of functions with values in a Banach space. Stud. Math. 166 (2005), 131-170. 
DOI 10.4064/sm166-2-2 | 
MR 2109586 
[36] Nualart, D.: 
Fractional Brownian motion: stochastic calculus and applications. In: Proceedings of the International Congress of Mathematicians. Volume III: Invited Lectures, Madrid, Spain, August 22-30, 2006 European Mathematical Society Zürich (2006), 1541-1562. 
MR 2275741 | 
Zbl 1102.60033 
[38] Palmer, T. N., Shutts, G. J., Hagedorn, R., Doblas-Reyes, F. J., Jung, T., Leutbecher, M.: 
Representing model uncertainty in weather and climate prediction. Annu. Rev. Earth Planet. Sci. 33 (2005), 163-193. 
DOI 10.1146/annurev.earth.33.092203.122552 | 
MR 2153320 
[39] Palmer, T. N.: A nonlinear dynamical perspective on model error: A proposal for non-local stochastic-dynamic parametrization in weather and climate prediction models. Q. J. Meteorological Soc. 127 (2001) B 279-304.
[40] Pasik-Duncan, B., Duncan, T. E., Maslowski, B.: 
Linear stochastic equations in a Hilbert space with a fractional Brownian motion. In: Stochastic Processes, Optimization, and Control Theory: Applications in Financial Engineering, Queueing Networks, and Manufacturing Systems. International Series in Operations Research & Management Science Springer New York (2006), 201-221. 
MR 2353483 | 
Zbl 1133.60015 
[41] Pazy, A.: 
Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences, 44. Springer New York (1983). 
MR 0710486 
[42] Samko, S. G., Kilbas, A. A., Marichev, O. I.: 
Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach New York (1993). 
MR 1347689 | 
Zbl 0818.26003 
[43] Triebel, H.: 
Interpolation Theory, Function Spaces, Differential Operators. North-Holland Math. Library, vol. 18. North-Holland Amsterdam (1978). 
MR 0503903 
[46] Willinger, W., Taqqu, M., Leland, W. E., Wilson, D. V.: 
Self-similarity in high speed packet traffic: analysis and modeling of Ethernet traffic measurements. Stat. Sci. 10 (1995), 67-85. 
DOI 10.1214/ss/1177010131 | 
Zbl 1148.90310