Previous |  Up |  Next

Article

Title: Chance constrained problems: penalty reformulation and performance of sample approximation technique (English)
Author: Branda, Martin
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 48
Issue: 1
Year: 2012
Pages: 105-122
Summary lang: English
.
Category: math
.
Summary: We explore reformulation of nonlinear stochastic programs with several joint chance constraints by stochastic programs with suitably chosen penalty-type objectives. We show that the two problems are asymptotically equivalent. Simpler cases with one chance constraint and particular penalty functions were studied in [6,11]. The obtained problems with penalties and with a fixed set of feasible solutions are simpler to solve and analyze then the chance constrained programs. We discuss solving both problems using Monte-Carlo simulation techniques for the cases when the set of feasible solution is finite or infinite bounded. The approach is applied to a financial optimization problem with Value at Risk constraint, transaction costs and integer allocations. We compare the ability to generate a feasible solution of the original chance constrained problem using the sample approximations of the chance constraints directly or via sample approximation of the penalty function objective. (English)
Keyword: chance constrained problems
Keyword: penalty functions
Keyword: asymptotic equivalence
Keyword: sample approximation technique
Keyword: investment problem
MSC: 62A10
MSC: 93E12
idZBL: Zbl 1243.93117
idMR: MR2932930
.
Date available: 2012-03-05T08:33:36Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/142065
.
Reference: [1] S. Ahmed, A. Shapiro: Solving chance-constrained stochastic programs via sampling and integer programming..In: Tutorials in Operations Research, (Z.-L. Chen and S. Raghavan, eds.), INFORMS 2008.
Reference: [2] E. Angelelli, R. Mansini, M. G. Speranza: A comparison of MAD and CVaR models with real features..J. Banking Finance 32 (2008), 1188-1197. 10.1016/j.jbankfin.2006.07.015
Reference: [3] M. S. Bazara, H. D. Sherali, C. M. Shetty: Nonlinear Programming: Theory and Algorithms..Wiley, Singapore 1993. MR 2218478
Reference: [4] M. Branda: Solving real-life portfolio problem using stochastic programming and Monte-Carlo techniques..In: Proc. Mathematical Methods in Economics 2010, (M. Houda, J. Friebelová, eds.), University of South Bohemia, České Budějovice 2010.
Reference: [5] M. Branda: Stochastic programming problems with generalized integrated chance constraints..Accepted to Optimization 2011. MR 2955282
Reference: [6] M. Branda, J. Dupačová: Approximations and contamination bounds for probabilistic programs..Accepted to Ann. Oper. Res. 2011 (Online first). See also SPEPS 13, 2008. MR 2874754
Reference: [7] G. Calafiore, M. C. Campi: Uncertain convex programs: randomized solutions and confidence levels..Math. Programming, Ser. A 102 (2008), 25-46. MR 2115479, 10.1007/s10107-003-0499-y
Reference: [8] A. DasGupta: Asymptotic Theory of Statistics and Probability..Springer, New York 1993. MR 2664452
Reference: [9] J. Dupačová, M. Kopa: Robustness in stochastic programs with risk constraints..Accepted to Ann. Oper. Res. 2011 (Online first). MR 2989600
Reference: [10] J. Dupačová, A. Gaivoronski, Z. Kos, T. Szantai: Stochastic programming in water management: A case study and a comparison of solution techniques..Europ. J. Oper. Res. 52 (1991), 28-44. Zbl 0726.90048, 10.1016/0377-2217(91)90333-Q
Reference: [11] Y. M. Ermoliev, T. Y. Ermolieva, G. J. Macdonald, V. I. Norkin: Stochastic optimization of insurance portfolios for managing exposure to catastrophic risks..Ann. Oper. Res. 99 (2000), 207-225. Zbl 0990.90084, MR 1837739, 10.1023/A:1019244405392
Reference: [12] P. Lachout: Approximative solutions of stochastic optimization problems..Kybernetika 46 (2010), 3, 513-523. Zbl 1229.90110, MR 2676087
Reference: [13] J. Luedtke, S. Ahmed: A sample approximation approach for optimization with probabilistic constraints..SIAM J. Optim. 19 (2008), 674-699. Zbl 1177.90301, MR 2425035, 10.1137/070702928
Reference: [14] J. Nocedal, S. J. Wright: Numerical Optimization..Springer, New York 2000. MR 2244940
Reference: [15] B. Pagnoncelli, S. Ahmed, A. Shapiro: Computational study of a chance constrained portfolio selection problem..Optimization Online 2008.
Reference: [16] B. Pagnoncelli, S. Ahmed, A. Shapiro: Sample average approximation method for chance constrained programming: Theory and applications..J. Optim. Theory Appl. 142 (2009), 399-416. Zbl 1175.90306, MR 2525799, 10.1007/s10957-009-9523-6
Reference: [17] A. Prékopa: Contributions to the theory of stochastic programming..Math. Programming 4 (1973), 202-221. Zbl 0273.90045, MR 0376145, 10.1007/BF01584661
Reference: [18] A. Prékopa: Dual method for the solution of a one-stage stochastic programming problem with random RHS obeying a discrete probability distribution..Math. Methods Oper. Res. 34 (1990), 441-461. Zbl 0724.90048, MR 1087554, 10.1007/BF01421551
Reference: [19] A. Prékopa: Stochastic Programming..Kluwer, Dordrecht and Académiai Kiadó, Budapest 1995. Zbl 0863.90116, MR 1375234
Reference: [20] A. Prékopa: Probabilistic programming..In: Stochastic Programming, (A. Ruszczynski and A. Shapiro,eds.), Handbook in Operations Research and Management Science, Vol. 10, Elsevier, Amsterdam 2003, pp. 267-352. MR 2052757
Reference: [21] R. T. Rockafellar, S. Uryasev: Conditional value-at-risk for general loss distributions..J. Banking Finance 26 (2002), 1443-1471. 10.1016/S0378-4266(02)00271-6
Reference: [22] R. T. Rockafellar, R. Wets: Variational Analysis..Springer-Verlag, Berlin 2004. MR 1491362
Reference: [23] A. Shapiro: Monte Carlo sampling methods..In: Stochastic Programming, (A. Ruszczynski and A. Shapiro, eds.), Handbook in Operations Research and Management Science, Vol. 10, Elsevier, Amsterdam 2003, pp. 353-426. MR 2052758
Reference: [24] S. W. Wallace, W. T. Ziemba: Applications of stochastic programming..MPS-SIAM Book Series on Optimization 5 (2005), Society for Industrial and Applied Mathematics. Zbl 1068.90002, MR 2162941
Reference: [25] E. Žampachová, M. Mrázek: Stochastic optimization in beam design and its reliability check..In: MENDEL 2010 - 16th Internat. Conference on Soft Computing, (R. Matoušek), ed.), Mendel Journal series, FME BUT, Brno 2010, pp. 405-410.
Reference: [26] E. Žampachová, P. Popela, M. Mrázek: Optimum beam design via stochastic programming..Kybernetika 46 (2010), 3, 571-582. Zbl 1201.90145, MR 2676092
.

Files

Files Size Format View
Kybernetika_48-2012-1_6.pdf 324.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo