Article
Keywords:
copula; Fréchet class; Diophantine equation
Summary:
This paper deals with conditions of compatibility of a system of copulas and with bounds of general Fréchet classes. Algebraic search for the bounds is interpreted as a solution to a linear system of Diophantine equations. Classical analytical specification of the bounds is described.
References:
[1] F. Durante, E. P. Klement, J. J. Quesada-Molina:
Bounds for trivariate copulas with given bivariate marginals. J. Inequal. Appl. ID 161537 (2008).
MR 2481572 |
Zbl 1162.62047
[2] P. Embrechts, F. Lindskog, A. McNeil: Modelling dependence with copulas and applications to risk management. In: Handbook of Heavy Tailed Distributions in Finance (S. T. Rachev, ed.), Elsevier/North-Holland 2003.
[7] A. P. Tomás, M. Filgueiras:
An algorithm for solving systems of linear Diophantine equations in naturals. In: Progress in Artificial Intelligence - EPIA'97, Lecture Notes in Artificial Intelligence 1323 (E. Costa and A. Cardoso, eds.), Springer-Verlag 1997, pp. 73-84.
MR 1703009