Previous |  Up |  Next

Article

Keywords:
category; $L$-valued category; fuzzy order relation
Summary:
The aim of this paper is to construct an $L$-valued category whose objects are $L$-$E$-ordered sets. To reach the goal, first, we construct a category whose objects are $L$-$E$-ordered sets and morphisms are order-preserving mappings (in a fuzzy sense). For the morphisms of the category we define the degree to which each morphism is an order-preserving mapping and as a result we obtain an $L$-valued category. Further we investigate the properties of this category, namely, we observe some special objects, special morphisms and special constructions.
References:
[1] J. Adamek, H. Herrlich, G. E. Strecker: Abstract and concrete categories: The joy of cats. Reprints in Theory and Applications of Categories, No. 17 2006. MR 2240597 | Zbl 1113.18001
[2] R. Bělohlávek: Fuzzy Relational Systems: Foundations and Principles. Kluwer Academic/Plenum Press, New York 2002. Zbl 1067.03059
[3] U. Bodenhofer: A similarity-based generalization of fuzzy orderings preserving the classical axioms. Internat. J. Uncertain. Fuzziness Knowledge-Based Systems 8(5) (2000), 593-610. DOI 10.1142/S0218488500000411 | MR 1784649 | Zbl 1113.03333
[4] U. Bodenhofer: Representations and constructions of similarity-based fuzzy orderings. Fuzzy Sets and Systems 137 (2003), 113-136. MR 1992702 | Zbl 1052.91032
[5] U. Bodenhofer, J. Küng: Fuzzy orderings in flexible query answering systems. Soft Computing 8 (2004), 7, 512-522. DOI 10.1007/s00500-003-0308-9 | MR 1784649 | Zbl 1063.68047
[6] U. Bodenhofer, B. De Baets, J. Fodor: A compendium of fuzzy weak orders: representations and constructions. Fuzzy Sets and Systems 158 (2007), 593-610. MR 2302639 | Zbl 1119.06001
[7] M. Demirci: A theory of vague lattices based on many-valued equivalence relations - I: General representation results. Fuzzy Sets and Systems 151 (2005), 3, 437-472. MR 2126168 | Zbl 1067.06006
[8] J. Fodor, M. Roubens: Fuzzy Preference Modelling and Multicriteria Decision Support. Kluwer Academic Publishers, Dordrecht 1994. Zbl 0827.90002
[9] J. A. Goguen: L-fuzzy sets. J. Math. Anal. Appl. 18 (1967), 338-353. MR 0224391 | Zbl 0145.24404
[10] O. Grigorenko: Categorical aspects of aggregation of fuzzy relations. In: Abstracts 10th Conference on Fuzzy Set Theory and Applications, 2010, p. 61.
[11] O. Grigorenko: Degree of monotonicity in aggregation process. In: Proc. 2010 IEEE International Conference on Fuzzy Systems, pp. 1080-1087.
[12] H. Herrlich, G. E. Strecker: Category Theory. Second edition. Heldermann Verlag, Berlin 1978. MR 2377903
[13] U. Höhle, N. Blanchard: Partial ordering in L-underdeterminate sets. Inform. Sci. 35 (1985), 133-144. DOI 10.1016/0020-0255(85)90045-3 | MR 0794764 | Zbl 0576.06004
[14] U. Höhle: Quotients with respect to similarity relations. Fuzzy Sets and Systems 27 (1988), 31-44. DOI 10.1016/0165-0114(88)90080-2 | MR 0950448 | Zbl 0666.18002
[15] U. Höhle: M-valued sets and sheaves over integral commutative cl-monoids. In: Applications of Category Theory to Fuzzy Subsets (S. E. Rodabaugh et al., eds.), Kluwer Academic Publishers, Dordrecht, Boston, London, pp. 33-72. MR 1154568 | Zbl 0766.03037
[16] E. P. Klement, R. Mesiar, E. Pap: Triangular Norms. Kluwer Academic Publishers, The Netherlands 2002. MR 1790096 | Zbl 1012.03033
[17] H. L. Lai, D. X. Zhang: Many-valued complete distributivity. arXiv:math.CT/0603590, 2006.
[18] F. W. Lawvere: Metric spaces, generalized logic, and closed categories. Rend. Sem. Mat. Fis. Milano 43 (1973), 135-166. Also Reprints in Theory and Applications of Categories 1 (2002). DOI 10.1007/BF02924844 | MR 0352214
[19] F. W. Lawvere: Taking categories seriously. Revisita Columbiana de Matemáticas XX (1986), 147-178. Also Reprints in Theory and Applications of Categories 8 (2005). MR 0948965 | Zbl 0648.18001
[20] O. Lebedeva (Grigorenko): Fuzzy order relation and fuzzy ordered set category. In: New Dimensions in fuzzy logic and related technologies. Proc. 5th EUSFLAT Conference, Ostrava 2007, pp. 403-407
[21] S. Ovchinnikov: Similarity relations, fuzzy partitions, and fuzzy orderings. Fuzzy Sets and Systems 40 (1991), 1, 107-126. DOI 10.1016/0165-0114(91)90048-U | MR 1103658 | Zbl 0725.04003
[22] A. Sostak: Fuzzy categories versus categories of fuzzy structured sets: Elements of the theory of fuzzy categories. Mathematik-Arbeitspapiere, Universitat Bremen 48 (1997), 407-437.
[23] A. Sostak: $L$-valued categories: Generalities and examples related to algebra and topology. In: Categorical Structures and Their Applications (W. Gahler and G. Preuss, eds.), World Scientific 2004, pp. 291-312. MR 2127008 | Zbl 1068.18001
[24] L. A. Zadeh: Similarity relations and fuzzy orderings. Inform. Sci. 3 (1971), 177-200. DOI 10.1016/S0020-0255(71)80005-1 | MR 0297650 | Zbl 0218.02058
[25] L. A. Zadeh: Fuzzy sets. Inform. Control 8 (1965), 338-353. DOI 10.1016/S0019-9958(65)90241-X | MR 0219427 | Zbl 0139.24606
Partner of
EuDML logo