Previous |  Up |  Next

Article

Title: Weak$^*$-continuous derivations in dual Banach algebras (English)
Author: Eshaghi-Gordji, M.
Author: Ebadian, A.
Author: Habibian, F.
Author: Hayati, B.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 48
Issue: 1
Year: 2012
Pages: 39-44
Summary lang: English
.
Category: math
.
Summary: Let $\mathcal{A}$ be a dual Banach algebra. We investigate the first weak$^*$-continuous cohomology group of $\mathcal{A}$ with coefficients in $\mathcal{A}$. Hence, we obtain conditions on ${\mathcal{A}}$ for which \[ H^1_{w^*}(\mathcal{A}, \mathcal{A})=\lbrace 0\rbrace \,. \] (English)
Keyword: Arens product
Keyword: 2-weakly amenable
Keyword: derivation
MSC: 46H25
idMR: MR2915848
DOI: 10.5817/AM2012-1-39
.
Date available: 2012-03-15T18:08:34Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/142090
.
Reference: [1] Arens, R.: The adjoint of a bilinear operation.Proc. Amer. Math. Soc. 2 (1951), 839–848. Zbl 0044.32601, MR 0045941, 10.1090/S0002-9939-1951-0045941-1
Reference: [2] Bonsall, F. F., Duncan, J.: Complete normed algebras.Springer, Berlin, 1973. Zbl 0271.46039, MR 0423029
Reference: [3] Dales, H. G.: Banach algebras and automatic continuity.Oxford, New York, 2000. Zbl 0981.46043, MR 1816726
Reference: [4] Dales, H. G., Ghahramani, F., Grønbæk, N.: Derivations into iterated duals of Banach algebras.Studia Math. 128 (1998), 19–54. MR 1489459
Reference: [5] Dales, H. G., Lau, A. T. M.: The second duals of Beurling algebras.Mem. Amer. Math. Soc. 177 (836) (2005). Zbl 1075.43003, MR 2155972
Reference: [6] Daws, M.: Connes–amenability of bidual algebras.Math. Scand. 99 (2) (2006), 217–246. MR 2289023
Reference: [7] Daws, M.: Dual Banach algebras: representations and injectivity.Studia Math. 178 (3) (2007), 231–275. Zbl 1115.46038, MR 2289356, 10.4064/sm178-3-3
Reference: [8] Despic, M., Ghahramani, F.: Weak amenability of group algebras of locally compact groups.Canad. Math. Bull. 37 (1994), 165–167. Zbl 0813.43001, MR 1275699, 10.4153/CMB-1994-024-4
Reference: [9] Ghahramani, F., Laali, J.: Amenability and topological centers of the second duals of Banach algebras.Bull. Austral. Math. Soc. 65 (2002), 191–197. MR 1898533, 10.1017/S0004972700020232
Reference: [10] Johnson, B. E.: Cohomology in Banach algebras.Mem. Amer. Math Soc. 127 (1972). Zbl 0256.18014, MR 0374934
Reference: [11] Johnson, B. E.: Weak amenability of group algebras.Bull. London Math. Soc. 23 (1991), 281–284. Zbl 0757.43002, MR 1123339, 10.1112/blms/23.3.281
Reference: [12] Lau, A. T. M., Ülger, A.: Topological centers of certain dual algebras.Trans. Amer. Math. Soc. 348 (1996), 1191–1212. Zbl 0859.43001, MR 1322952, 10.1090/S0002-9947-96-01499-7
Reference: [13] Losert, V.: The derivation problem for group algebras.Ann. of Math. (2) 168 (1) (2008), 221–246. Zbl 1171.43004, MR 2415402, 10.4007/annals.2008.168.221
Reference: [14] Runde, V.: Amenability for dual Banach algebras.Studia Math. 148 (1) (2001), 47–66. Zbl 1003.46028, MR 1881439, 10.4064/sm148-1-5
Reference: [15] Runde, V.: Lectures on amenability.Springer Verlag, Berlin–Heidelberg–New York, 2002. Zbl 0999.46022, MR 1874893
Reference: [16] Sakai, S.: $C^*$–algebras and $W^*$–algebras.Springer, New York, 1971. Zbl 0233.46074, MR 0442701
.

Files

Files Size Format View
ArchMathRetro_048-2012-1_4.pdf 450.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo