Previous |  Up |  Next

Article

Title: An extragradient approximation method for variational inequality problem on fixed point problem of nonexpensive mappings and monotone mappings (English)
Author: Suvarnamani, Alongkot
Author: Tatong, Mongkol
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 48
Issue: 1
Year: 2012
Pages: 45-59
Summary lang: English
.
Category: math
.
Summary: We introduce an iterative sequence for finding the common element of the set of fixed points of a nonexpansive mapping and the solutions of the variational inequality problem for tree inverse-strongly monotone mappings. Under suitable conditions, some strong convergence theorems for approximating a common element of the above two sets are obtained. Moreover, using the above theorem, we also apply to finding solutions of a general system of variational inequality and a zero of a maximal monotone operator in a real Hilbert space. As applications, at the end of paper we utilize our results to study the zeros of the maximal monotone and some convergence problem for strictly pseudocontractive mappings. Our results include the previous results as special cases extend and improve the results of Ceng et al., [Math. Meth. Oper. Res., 67:375–390, 2008] and many others. (English)
Keyword: nonexpansive mapping
Keyword: fixed point problems
Keyword: Variational inequality
Keyword: relaxed extragradient approximation method
Keyword: maximal monotone
MSC: 47H09
MSC: 47H10
MSC: 47J05
MSC: 47J25
idMR: MR2915849
DOI: 10.5817/AM2012-1-45
.
Date available: 2012-03-15T18:10:53Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/142091
.
Reference: [1] Blum, E., Oettli, W.: From optimization and variational inequalities to equilibrium problems.Math. Student 63 (1994), 123–145. Zbl 0888.49007, MR 1292380
Reference: [2] Browder, F. E., Petryshyn, W. V.: Construction of fixed points of nonlinear mappings in Hilbert spaces.J. Math. Anal. Appl. 20 (1967), 197–228. MR 0217658, 10.1016/0022-247X(67)90085-6
Reference: [3] Ceng, L.–C., Wang, C.–Y., Yao, J.–C.: Strong convergence theorems by a relaxed extragradient method for a general system of variational inequalities.Math. Methods Oper. Res. 67 (2008), 375–390. Zbl 1147.49007, MR 2403714, 10.1007/s00186-007-0207-4
Reference: [4] Combettes, P. L., Hirstoaga, S. A.: Equilibrium programming in Hilbert spaces.J. Nonlinear Convex Anal. 6 (1) (2005), 117–136. Zbl 1109.90079, MR 2138105
Reference: [5] Goebel, K., Kirk, W. A.: Topics on Metric Fixed–Point Theory.Cambridge University Press, 1990. MR 1074005
Reference: [6] Haugazeau, Y.: Surles in équations variationnelles et la minimisation de fonctionnelles convexes, Thèse.Master's thesis, Université de Paris, 1968.
Reference: [7] Korpelevich, G. M.: An extragradient method for finding saddle points and for other problems.Ékonom. i Mat. Metody 12 (940) (1976), 747–756, Russian. MR 0451121
Reference: [8] Kumam, P.: Strong convergence theorems by an extragradient method for solving variational inequalities and equilibrium problems in a Hilbert space.Turkish J. Math. 33 (1) (2009), 85–98. Zbl 1223.47083, MR 2524118
Reference: [9] Liu, F., Nashed, M. Z., Takahashi, W.: Regularization of nonlinear ill–posed variational inequalities and convergence rates.Set–Valued Anal. 6 (1998), 313–344. MR 1690160
Reference: [10] Nadezhkina, N., Takahashi, W.: Weak convergence theorem by an extragradient method for nonexpansive mappings and monotone mappings.J. Optim. Theory Appl. 128 (2006), 191–201. Zbl 1130.90055, MR 2201895, 10.1007/s10957-005-7564-z
Reference: [11] Osilike, M. O., Igbokwe, D. I.: Weak and strong convergence theorems for fixed points of pseudocontractions and solutions of monotone type operator equations.Comput. Math. Appl. 40 (2000), 559–567. Zbl 0958.47030, MR 1772655, 10.1016/S0898-1221(00)00179-6
Reference: [12] Plubtieng, S., Punpaeng, R.: A new iterative method for equilibrium problems 3 and fixed point problems of nonexpansive mappings and 4 monotone mappings.Appl. Math. Comput. (2007). 10.1016/j.amc.2007.07.075
Reference: [13] Su, Y. et al.,: An iterative method of solution for equilibrium and optimization problems.Nonlinear Anal. (2007). 10.1016/j.na.2007.08.045
Reference: [14] Suzuki, T.: Strong convergence of Krasnoselskii and Mann’s type sequences for one–parameter nonexpansive semigroups without Bochner integrals.J. Math. Anal. Appl. 305 (2005), 227–239. Zbl 1068.47085, MR 2128124, 10.1016/j.jmaa.2004.11.017
Reference: [15] Takahashi, S., Takahashi, W.: Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces.J. Math. Anal. Appl. 331 (1) (2007), 506–515. Zbl 1122.47056, MR 2306020, 10.1016/j.jmaa.2006.08.036
Reference: [16] Takahashi, W., Toyoda, M.: Weak convergence theorems for nonexpansive mappings and monotone mappings.J. Optim. Theory Appl. 118 (2003), 417–428. Zbl 1055.47052, MR 2006529, 10.1023/A:1025407607560
Reference: [17] Verma, R. U.: On a new system of nonlinear variational inequalities and associated iterative algorithms.Math. Sci. Res. Hot–Line 3 (8) (1999), 65–68. Zbl 0970.49011, MR 1717779
Reference: [18] Verma, R. U.: Iterative algorithms and a new system of nonlinear quasivariational inequalities.Adv. Nonlinear Var. Inequal. 4 (1) (2001), 117–127. Zbl 1014.47050, MR 1801652
Reference: [19] Xu, H. K.: Viscosity approximation methods for nonexpansive mappings.J. Math. Anal. Appl. 298 (2004), 279–291. Zbl 1061.47060, MR 2086546, 10.1016/j.jmaa.2004.04.059
Reference: [20] Yao, J–C., Chadli, O.: Handbook of Generalized Convexity and Monotonicity.ch. Pseudomonotone complementarity problems and variational inequalities, pp. 501–558, Springer, Netherlands, 2005. MR 2098908
Reference: [21] Yao, Y., C., Liou Y., Yao, J.–C.: An extragradient method for fixed point problems and variational inequality problems.Journal of Inequalities and Applications 2007 (2007), 12, article ID 38752. Zbl 1137.47057, MR 2291644, 10.1155/2007/38752
Reference: [22] Yao, Y., Yao, J.–C.: On modified iterative method for nonexpansive mappings and monotone mappings.Appl. Math. Comput. 186 (2007), 1551–1558. Zbl 1121.65064, MR 2316950, 10.1016/j.amc.2006.08.062
Reference: [23] Zeng, L. C., Wong, N. C., Yao, J.–C.: Strong convergence theorems for strictly pseudocontractive mapping of Browder–Petryshyn type.Taiwanese J. Math. 10 (4) (2006), 837–849. MR 2229625
Reference: [24] Zeng, L. C., Yao, J.–C.: Strong convergence theorem by an extragradient method for fixed point problems and variational inequality problems.Taiwanese J. Math. 10 (2006), 1293–1303. Zbl 1110.49013, MR 2253379
Reference: [25] Zhang, S., Lee, J., Chan, C.: Algorithms of common solutions to quasi variational inclusion and fixed point problems.Appl. Math. Mech. (English Ed.) 29 (5) (2008), 571–581. Zbl 1196.47047, MR 2414681, 10.1007/s10483-008-0502-y
.

Files

Files Size Format View
ArchMathRetro_048-2012-1_5.pdf 446.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo